forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 2
/
job.py
66 lines (51 loc) · 1.92 KB
/
job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# description: train tensorflow CNN model on mnist data distributed via horovod
# For more information on using Horovod with TensorFlow, refer to Horovod documentation:
#
# * [Horovod with TensorFlow](https://github.com/horovod/horovod/blob/master/docs/tensorflow.rst)
# * [Horovod with Keras](https://github.com/horovod/horovod/blob/master/docs/keras.rst)
# imports
import os
from pathlib import Path
from azureml.core import Workspace
from azureml.core import ScriptRunConfig, Experiment, Environment
from azureml.core.runconfig import MpiConfiguration
# get workspace
ws = Workspace.from_config()
# get root of git repo
prefix = Path(__file__).parent
# training script
source_dir = str(prefix.joinpath("src"))
script_name = "train.py"
# environment file
environment_file = str(prefix.joinpath("environment.yml"))
# azure ml settings
environment_name = "tf-gpu-horovod-example"
experiment_name = "tf-mnist-distributed-horovod-example"
compute_name = "gpu-K80-2"
# create environment
env = Environment.from_conda_specification(environment_name, environment_file)
# specify a GPU base image
env.docker.enabled = True
env.docker.base_image = (
"mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu20.04"
)
# Create a `ScriptRunConfig` to specify the training script & arguments, environment, and cluster to run on.
#
# Create an `MpiConfiguration` to run an MPI/Horovod job.
# Specify a `process_count_per_node` equal to the number of GPUs available per node of your cluster.
# create distributed config
distr_config = MpiConfiguration(process_count_per_node=2, node_count=2)
# create arguments
args = ["--epochs", 30]
# create job config
src = ScriptRunConfig(
source_directory=source_dir,
script=script_name,
arguments=args,
compute_target=compute_name,
environment=env,
distributed_job_config=distr_config,
)
# submit job
run = Experiment(ws, experiment_name).submit(src)
run.wait_for_completion(show_output=True)