-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathoptions.py
executable file
·137 lines (115 loc) · 6.74 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import torch
### Parser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', default='./data/TCGA_GBMLGG', help="datasets")
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints/TCGA_GBMLGG', help='models are saved here')
parser.add_argument('--exp_name', type=str, default='exp_name', help='name of the project. It decides where to store samples and models')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--mode', type=str, default='omic', help='mode')
parser.add_argument('--model_name', type=str, default='omic', help='mode')
parser.add_argument('--use_vgg_features', type=int, default=0, help='Use pretrained embeddings')
parser.add_argument('--use_rnaseq', type=int, default=0, help='Use RNAseq data.')
parser.add_argument('--task', type=str, default='surv', help='surv | grad')
parser.add_argument('--useRNA', type=int, default=0) # Doesn't work at the moment...:(
parser.add_argument('--useSN', type=int, default=1)
parser.add_argument('--act_type', type=str, default='Sigmoid', help='activation function')
parser.add_argument('--input_size_omic', type=int, default=80, help="input_size for omic vector")
parser.add_argument('--input_size_path', type=int, default=512, help="input_size for path images")
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--save_at', type=int, default=20, help="adsfasdf")
parser.add_argument('--label_dim', type=int, default=1, help='size of output')
parser.add_argument('--measure', default=1, type=int, help='disables measure while training (make program faster)')
parser.add_argument('--verbose', default=1, type=int)
parser.add_argument('--print_every', default=0, type=int)
parser.add_argument('--optimizer_type', type=str, default='adam')
parser.add_argument('--beta1', type=float, default=0.9, help='0.9, 0.5 | 0.25 | 0')
parser.add_argument('--beta2', type=float, default=0.999, help='0.9, 0.5 | 0.25 | 0')
parser.add_argument('--lr_policy', default='linear', type=str, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--finetune', default=1, type=int, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--final_lr', default=0.1, type=float, help='Used for AdaBound')
parser.add_argument('--reg_type', default='omic', type=str, help="regularization type")
parser.add_argument('--niter', type=int, default=0, help='# of iter at starting learning rate')
parser.add_argument('--niter_decay', type=int, default=25, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--epoch_count', type=int, default=1, help='start of epoch')
parser.add_argument('--batch_size', type=int, default=32, help="Number of batches to train/test for. Default: 256")
parser.add_argument('--lambda_cox', type=float, default=1)
parser.add_argument('--lambda_reg', type=float, default=3e-4)
parser.add_argument('--lambda_nll', type=float, default=1)
parser.add_argument('--fusion_type', type=str, default="pofusion", help='concat | pofusion')
parser.add_argument('--skip', type=int, default=0)
parser.add_argument('--use_bilinear', type=int, default=1)
parser.add_argument('--path_gate', type=int, default=1)
parser.add_argument('--grph_gate', type=int, default=1)
parser.add_argument('--omic_gate', type=int, default=1)
parser.add_argument('--path_dim', type=int, default=32)
parser.add_argument('--grph_dim', type=int, default=32)
parser.add_argument('--omic_dim', type=int, default=32)
parser.add_argument('--path_scale', type=int, default=1)
parser.add_argument('--grph_scale', type=int, default=1)
parser.add_argument('--omic_scale', type=int, default=1)
parser.add_argument('--mmhid', type=int, default=64)
parser.add_argument('--init_type', type=str, default='none', help='network initialization [normal | xavier | kaiming | orthogonal | max]. Max seems to work well')
parser.add_argument('--dropout_rate', default=0.25, type=float, help='0 - 0.25. Increasing dropout_rate helps overfitting. Some people have gone as high as 0.5. You can try adding more regularization')
parser.add_argument('--use_edges', default=1, type=float, help='Using edge_attr')
parser.add_argument('--pooling_ratio', default=0.2, type=float, help='pooling ratio for SAGPOOl')
parser.add_argument('--lr', default=2e-3, type=float, help='5e-4 for Adam | 1e-3 for AdaBound')
parser.add_argument('--weight_decay', default=4e-4, type=float, help='Used for Adam. L2 Regularization on weights. I normally turn this off if I am using L1. You should try')
parser.add_argument('--GNN', default='GCN', type=str, help='GCN | GAT | SAG. graph conv mode for pooling')
parser.add_argument('--patience', default=0.005, type=float)
opt = parser.parse_known_args()[0]
print_options(parser, opt)
opt = parse_gpuids(opt)
return opt
def print_options(parser, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.exp_name, opt.model_name)
mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format('train'))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
def parse_gpuids(opt):
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
return opt
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)