-
Notifications
You must be signed in to change notification settings - Fork 82
/
nelder_mead.R
438 lines (360 loc) · 9.17 KB
/
nelder_mead.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
#' ---
#' title: "Nelder Mead algorithm"
#' author: "Michael Clark"
#' css: '../other.css'
#' highlight: pygments
#' date: ""
#' ---
#'
#'
#'
#' This is based on the pure Python implementation by François Chollet found at
#' https://github.com/fchollet/nelder-mead (also in this repo at
#' nelder_mead.py). This is mostly just an academic exercise on my part. I'm
#' not sure how much one would use the basic NM for many situations. In my
#' experience BFGS and other approaches would be faster, more accurate, and less
#' sensitive to starting values for the types of problems I've played around
#' with. Others who actually spend their time researching such things seem to
#' agree.
#'
#' There were two issues on
#' (GitHub)[https://github.com/fchollet/nelder-mead/issues/2] regarding the
#' original code, and I've implemented the suggested corrections with notes. The
#' initial function code is not very R-like, as the goal was to keep more
#' similar to the original Python for comparison, which used a list approach. I
#' also provide a more R-like/cleaner version that uses matrices instead of
#' lists, but which still sticks the same approach for the most part.
#'
#' For both functions, comparisons are made using the `optimx` package, but feel
#' free to use base R's `optim` instead.
#'
#' - `f` function to optimize, must return a scalar score and operate over
#' an array of the same dimensions as x_start
#' - `x_start` initial position
#' - `step` look-around radius in initial step
#' - `no_improve_thr` See no_improv_break
#' - `no_improv_break` break after no_improv_break iterations with an
#' improvement lower than no_improv_thr
#' - `max_iter` always break after this number of iterations. Set it to 0 to
#' loop indefinitely.
#' - `alpha` parameters of the algorithm (see Wikipedia page for reference)
#' - `gamma` parameters of the algorithm (see Wikipedia page for reference)
#' - `rho` parameters of the algorithm (see Wikipedia page for reference)
#' - `sigma` parameters of the algorithm (see Wikipedia page for reference)
#' - `verbose` Print iterations?
#'
#'
#' This function returns the best parameter array and best score.
#'
#'
#' # First version
nelder_mead = function(
f,
x_start,
step = 0.1,
no_improve_thr = 1e-12,
no_improv_break = 10,
max_iter = 0,
alpha = 1,
gamma = 2,
rho = 0.5,
sigma = 0.5,
verbose = FALSE
) {
# init
dim = length(x_start)
prev_best = f(x_start)
no_improv = 0
res = list(list(x_start = x_start, prev_best = prev_best))
for (i in 1:dim) {
x = x_start
x[i] = x[i] + step
score = f(x)
res = append(res, list(list(x_start = x, prev_best = score)))
}
# simplex iter
iters = 0
while (TRUE) {
# order
idx = sapply(res, `[[`, 2)
res = res[order(idx)] # ascending order
best = res[[1]][[2]]
# break after max_iter
if (max_iter > 0 & iters >= max_iter) return(res[[1]])
iters = iters + 1
# break after no_improv_break iterations with no improvement
if (verbose) message(paste('...best so far:', best))
if (best < (prev_best - no_improve_thr)) {
no_improv = 0
prev_best = best
} else {
no_improv = no_improv + 1
}
if (no_improv >= no_improv_break) return(res[[1]])
# centroid
x0 = rep(0, dim)
for (tup in 1:(length(res)-1)) {
for (i in 1:dim) {
x0[i] = x0[i] + res[[tup]][[1]][i] / (length(res)-1)
}
}
# reflection
xr = x0 + alpha * (x0 - res[[length(res)]][[1]])
rscore = f(xr)
if (res[[1]][[2]] <= rscore &
rscore < res[[length(res)-1]][[2]]) {
res[[length(res)]] = list(xr, rscore)
next
}
# expansion
if (rscore < res[[1]][[2]]) {
# xe = x0 + gamma*(x0 - res[[length(res)]][[1]]) # issue with this
xe = x0 + gamma * (xr - x0)
escore = f(xe)
if (escore < rscore) {
res[[length(res)]] = list(xe, escore)
next
} else {
res[[length(res)]] = list(xr, rscore)
next
}
}
# contraction
# xc = x0 + rho*(x0 - res[[length(res)]][[1]]) # issue with wiki consistency for rho values (and optim)
xc = x0 + rho * (res[[length(res)]][[1]] - x0)
cscore = f(xc)
if (cscore < res[[length(res)]][[2]]) {
res[[length(res)]] = list(xc, cscore)
next
}
# reduction
x1 = res[[1]][[1]]
nres = list()
for (tup in res) {
redx = x1 + sigma * (tup[[1]] - x1)
score = f(redx)
nres = append(nres, list(list(redx, score)))
}
res = nres
}
}
#' ## Example
#' The function to minimize.
#'
f = function(x) {
sin(x[1]) * cos(x[2]) * (1 / (abs(x[3]) + 1))
}
nelder_mead(
f,
c(0, 0, 0),
max_iter = 1000,
no_improve_thr = 1e-12
)
#' Compare to `optimx`. You may see warnings.
optimx::optimx(
par = c(0, 0, 0),
fn = f,
method = "Nelder-Mead",
control = list(
alpha = 1,
gamma = 2,
beta = 0.5,
maxit = 1000,
reltol = 1e-12
)
)
#' ## A Regression Model
#'
#' I find a regression model to be more applicable/intuitive for my needs, so
#' provide an example for that case.
#'
#'
#' ### Data setup
set.seed(8675309)
N = 500
npreds = 5
X = cbind(1, matrix(rnorm(N * npreds), ncol = npreds))
beta = runif(ncol(X), -1, 1)
y = X %*% beta + rnorm(nrow(X))
#' Least squares loss function.
f = function(b) {
crossprod(y - X %*% b)[,1] # if using optimx need scalar
}
# lm estimates
lm.fit(X, y)$coef
nm_result = nelder_mead(
f,
runif(ncol(X)),
max_iter = 2000,
no_improve_thr = 1e-12,
verbose = FALSE
)
#' ### Comparison
#' Compare to `optimx`.
opt_out = optimx::optimx(
runif(ncol(X)),
fn = f, # model function
method = 'Nelder-Mead',
control = list(
alpha = 1,
gamma = 2,
beta = 0.5,
#rho
maxit = 2000,
reltol = 1e-12
)
)
rbind(
nm_func = unlist(nm_result),
nm_optimx = opt_out[1:7]
)
#' # Second version
#'
#' This is a more natural R approach in my opinion.
nelder_mead2 = function(
f,
x_start,
step = 0.1,
no_improve_thr = 1e-12,
no_improv_break = 10,
max_iter = 0,
alpha = 1,
gamma = 2,
rho = 0.5,
sigma = 0.5,
verbose = FALSE
) {
# init
npar = length(x_start)
nc = npar + 1
prev_best = f(x_start)
no_improv = 0
res = matrix(c(x_start, prev_best), ncol = nc)
colnames(res) = c(paste('par', 1:npar, sep = '_'), 'score')
for (i in 1:npar) {
x = x_start
x[i] = x[i] + step
score = f(x)
res = rbind(res, c(x, score))
}
# simplex iter
iters = 0
while (TRUE) {
# order
res = res[order(res[, nc]), ] # ascending order
best = res[1, nc]
# break after max_iter
if (max_iter & iters >= max_iter) return(res[1, ])
iters = iters + 1
# break after no_improv_break iterations with no improvement
if (verbose) message(paste('...best so far:', best))
if (best < (prev_best - no_improve_thr)) {
no_improv = 0
prev_best = best
} else {
no_improv = no_improv + 1
}
if (no_improv >= no_improv_break)
return(res[1, ])
nr = nrow(res)
# centroid: more efficient than previous double loop
x0 = colMeans(res[(1:npar), -nc])
# reflection
xr = x0 + alpha * (x0 - res[nr, -nc])
rscore = f(xr)
if (res[1, 'score'] <= rscore & rscore < res[npar, 'score']) {
res[nr,] = c(xr, rscore)
next
}
# expansion
if (rscore < res[1, 'score']) {
xe = x0 + gamma * (xr - x0)
escore = f(xe)
if (escore < rscore) {
res[nr, ] = c(xe, escore)
next
} else {
res[nr, ] = c(xr, rscore)
next
}
}
# contraction
xc = x0 + rho * (res[nr, -nc] - x0)
cscore = f(xc)
if (cscore < res[nr, 'score']) {
res[nr,] = c(xc, cscore)
next
}
# reduction
x1 = res[1, -nc]
nres = res
for (i in 1:nr) {
redx = x1 + sigma * (res[i, -nc] - x1)
score = f(redx)
nres[i, ] = c(redx, score)
}
res = nres
}
}
#' ## Example function
f = function(x) {
sin(x[1]) * cos(x[2]) * (1 / (abs(x[3]) + 1))
}
nelder_mead2(
f,
c(0, 0, 0),
max_iter = 1000,
no_improve_thr = 1e-12
)
optimx::optimx(
par = c(0, 0, 0),
fn = f,
method = "Nelder-Mead",
control = list(
alpha = 1,
gamma = 2,
beta = 0.5,
maxit = 1000,
reltol = 1e-12
)
)
#' ## A Regression Model
set.seed(8675309)
N = 500
npreds = 5
X = cbind(1, matrix(rnorm(N * npreds), ncol = npreds))
beta = runif(ncol(X), -1, 1)
y = X %*% beta + rnorm(nrow(X))
# least squares loss
f = function(b) {
crossprod(y - X %*% b)[,1] # if using optimx need scalar
}
lm_par = lm.fit(X, y)$coef
nm_par = nelder_mead2(
f,
runif(ncol(X)),
max_iter = 2000,
no_improve_thr = 1e-12
)
#' ## Comparison
#' Compare to `optimx`.
opt_par = optimx::optimx(
runif(ncol(X)),
fn = f,
method = 'Nelder-Mead',
control = list(
alpha = 1,
gamma = 2,
beta = 0.5,
maxit = 2000,
reltol = 1e-12
)
)[1:(npreds + 1)]
rbind(
lm = lm_par,
nm = nm_par,
optimx = opt_par,
truth = beta
)
#' # Source
#' Base R source code found at https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/nelder_mead.R