-
Notifications
You must be signed in to change notification settings - Fork 82
/
EM algorithm for ppca.R
145 lines (110 loc) · 4.55 KB
/
EM algorithm for ppca.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# ------------------------------------------------------------------------------#
# The following is an EM algorithm for probabilistic principal components #
# analysis. Based on Tipping and Bishop, 1999, and also Murphy 2012 #
# Probabilistic ML, with some code snippets inspired by the ppca function used #
# below. See also ModelFitting/EM Examples/EM for pca.R #
# ------------------------------------------------------------------------------#
#####################
### Main Function ###
#####################
PPCAEM = function(X, nComp=2, tol=.00001, maxits=100, showits=T){
# Arguments X: numeric data, nComp: number of components
# tol = tolerance level, maxits: maximum iterations, showits: show iterations
require(pracma) # for orthonormal basis of W; pcaMethods package has also
require(psych) # for tr
# starting points and other initializations
N = nrow(X)
D = ncol(X)
L = nComp
S = (1/N) * t(X)%*%X
evals = eigen(S)$values
evecs = eigen(S)$vectors
V = evecs[,1:L]
Lambda = diag(evals[1:L])
Z = t(replicate(L, rnorm(N))) # latent variables
sigma2 = 1/(D-L) * sum(evals[(L+1):D]) # variance; average variance associated with discarded dimensions
W = V %*% chol(Lambda-sigma2*diag(L)) %*% diag(L) # loadings; this and sigma2 starting points will be near final estimate
it = 0
converged = FALSE
ll = 0
if (showits) # Show iterations
cat(paste("Iterations of EM:", "\n"))
while ((!converged) & (it < maxits)) {
# create 'old' values for comparison
if(exists('W.new')){
W.old = W.new
}
else {
W.old = W
}
ll.old = ll
Psi = sigma2*diag(L)
M = t(W.old) %*% W.old + Psi
W.new = S%*%W.old%*%solve(Psi + solve(M)%*%t(W.old)%*%S%*%W.old) # E and M
sigma2 = 1/D * tr(S - S%*%W.old%*%solve(M)%*%t(W.new))
Z = solve(M)%*%t(W.new)%*%t(X)
ZZ = sigma2*solve(M) + Z%*%t(Z)
# log likelihood as in paper
# ll = .5*sigma2*D + .5*tr(ZZ) + .5*sigma2 * X%*%t(X) -
# 1/sigma2 * t(Z)%*%t(W.new)%*%t(X) + .5*sigma2 * tr(t(W.new)%*%W.new%*%ZZ)
# ll = -sum(ll)
# more straightforward
ll = dnorm(X, mean=t(W.new%*%Z), sd=sqrt(sigma2), log=T)
ll = -sum(ll)
it = it + 1
if (showits & (it == 1 | it%%5 == 0)) # if showits, show first and every 5th iteration
cat(paste(format(it), "...", "\n", sep = ""))
converged = max(abs(ll.old-ll)) <= tol
}
W = orth(W.new)
evs = eigen(cov(X %*% W))
evecs = evs$vectors
W = W %*% evecs
Z = X %*% W
Xrecon = Z %*% t(W)
reconerr = sum((Xrecon-X)^2)
if (showits) # Show last iteration
cat(paste0(format(it), "...", "\n"))
return(list(scores=Z, loadings=W, Xrecon=Xrecon, reconerr=reconerr, ll=ll, sigma2=sigma2))
}
###############
### Example ###
###############
### Get data and run
# state.x77 is the data; various state demographics
X = scale(state.x77)
outEM = PPCAEM(X=X, nComp=2, tol=1e-12, maxit=100)
outEM
# Extract reconstructed values and loadings for comparison
Xrecon = outEM$Xrecon
loadingsEM = outEM$loadings
scoresEM = outEM$scores
# mean squared reconstruction error
mean((Xrecon-X)^2) # outEM$reconerr/prod(dim(X))
### compare to standard pca on full data set if desired
origpca = princomp(scale(state.x77))
scores_origpca = origpca$scores[,1:2]
loadings_origpca = origpca$loadings[,1:2]
Xrecon_origpca = scores_origpca%*%t(loadings_origpca)
#################################################
### compare results to output from pcaMethods ###
#################################################
### Run pca. Note that signs for loadings/scores may be opposite.
library(pcaMethods)
outpcam = pca(X, nPcs=2, threshold=1e-8, method='ppca', scale='none', center=F)
loadings_pcam = loadings(outpcam)
scores_pcam = scores(outpcam)
### compare loadings and scores
round(cbind(loadings_pcam, loadingsEM, loadings_origpca), 3)
sum((abs(loadings_pcam)-abs(loadingsEM))^2)
round(cbind(abs(scores_pcam), abs(scoresEM)), 2)
### compare reconstructed data sets
Xrecon_pcam = scores_pcam %*% t(loadings_pcam)
mean((Xrecon_pcam-X)^2)
mean(abs(Xrecon_pcam-Xrecon))
# plots
library(car)
scatterplotMatrix(cbind(X[,1], Xrecon[,1], Xrecon_pcam[,1]))
scatterplotMatrix(cbind(X[,2], Xrecon[,2], Xrecon_pcam[,2]))
plot(Xrecon[,1], Xrecon_pcam[,1], pch=19, col='gray50')
scatterplotMatrix(cbind(scoresEM, scores_pcam) )