-
Notifications
You must be signed in to change notification settings - Fork 165
/
Copy pathsar.c
498 lines (412 loc) · 13.4 KB
/
sar.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2019-2020 Realtek Corporation
*/
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 11, 0)
#include "acpi.h"
#include "debug.h"
#include "phy.h"
#include "reg.h"
#include "sar.h"
#define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
#define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
#define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
u32 center_freq)
{
switch (center_freq) {
default:
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center freq: %u to SAR subband is unhandled\n",
center_freq);
fallthrough;
case 2412 ... 2484:
return RTW89_SAR_2GHZ_SUBBAND;
case 5180 ... 5320:
return RTW89_SAR_5GHZ_SUBBAND_1_2;
case 5500 ... 5720:
return RTW89_SAR_5GHZ_SUBBAND_2_E;
case 5745 ... 5825:
return RTW89_SAR_5GHZ_SUBBAND_3;
case 5955 ... 6155:
return RTW89_SAR_6GHZ_SUBBAND_5_L;
case 6175 ... 6415:
return RTW89_SAR_6GHZ_SUBBAND_5_H;
case 6435 ... 6515:
return RTW89_SAR_6GHZ_SUBBAND_6;
case 6535 ... 6695:
return RTW89_SAR_6GHZ_SUBBAND_7_L;
case 6715 ... 6855:
return RTW89_SAR_6GHZ_SUBBAND_7_H;
/* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
* and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
* struct rtw89_sar_span in the following.
*/
case 6895 ... 7115:
return RTW89_SAR_6GHZ_SUBBAND_8;
}
}
struct rtw89_sar_span {
enum rtw89_sar_subband subband_low;
enum rtw89_sar_subband subband_high;
};
#define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
#define RTW89_SAR_6GHZ_SPAN_HEAD 6145
#define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
#define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
[RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
.subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
.subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
}
/* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
* subbands. In the following, we describe each of them with rtw89_sar_span.
*/
static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
};
static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
u32 center_freq, s32 *cfg)
{
struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
const struct rtw89_sar_span *span = NULL;
enum rtw89_sar_subband subband_l, subband_h;
int idx;
if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
/* To decrease size of rtw89_sar_overlapping_6ghz[],
* RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
* to make first span as index 0 of the table. So, if center
* frequency is less than the first one, it will get netative.
*/
if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
span = &rtw89_sar_overlapping_6ghz[idx];
}
if (span && RTW89_SAR_SPAN_VALID(span)) {
subband_l = span->subband_low;
subband_h = span->subband_high;
} else {
subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
subband_h = subband_l;
}
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center_freq %u: SAR subband {%u, %u}\n",
center_freq, subband_l, subband_h);
if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
return -ENODATA;
if (!rtwsar->set[subband_l])
*cfg = rtwsar->cfg[subband_h];
else if (!rtwsar->set[subband_h])
*cfg = rtwsar->cfg[subband_l];
else
*cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
return 0;
}
static const
struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
[RTW89_SAR_SOURCE_COMMON] = {
.descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
.txpwr_factor_sar = 2,
.query_sar_config = rtw89_query_sar_config_common,
},
};
#define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
do { \
typeof(_src) _s = (_src); \
typeof(_dev) _d = (_dev); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
lockdep_assert_held(&_d->mutex); \
_d->sar._cfg_name = *(_cfg_data); \
_d->sar.src = _s; \
} while (0)
static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
{
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
s32 cfg_mac;
cfg_mac = fct > fct_mac ?
cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
return (s8)clamp_t(s32, cfg_mac,
RTW89_SAR_TXPWR_MAC_MIN,
RTW89_SAR_TXPWR_MAC_MAX);
}
static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
s8 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg << (fct - RTW89_TAS_FACTOR);
else
return cfg >> (RTW89_TAS_FACTOR - fct);
}
static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
s8 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg >> (fct - RTW89_TAS_FACTOR);
else
return cfg << (RTW89_TAS_FACTOR - fct);
}
s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_tas_info *tas = &rtwdev->tas;
s8 delta;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE)
return RTW89_SAR_TXPWR_MAC_MAX;
ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
if (ret)
return RTW89_SAR_TXPWR_MAC_MAX;
if (tas->enable) {
switch (tas->state) {
case RTW89_TAS_STATE_DPR_OFF:
return RTW89_SAR_TXPWR_MAC_MAX;
case RTW89_TAS_STATE_DPR_ON:
delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
cfg -= delta;
break;
case RTW89_TAS_STATE_DPR_FORBID:
default:
break;
}
}
fct = sar_hdl->txpwr_factor_sar;
return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
}
void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE) {
seq_puts(m, "no SAR is applied\n");
return;
}
seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
if (ret) {
seq_printf(m, "config: return code: %d\n", ret);
seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
return;
}
fct = sar_hdl->txpwr_factor_sar;
seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
}
void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
if (!tas->enable) {
seq_puts(m, "no TAS is applied\n");
return;
}
seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
seq_printf(m, "TAS delta: %d\n", tas->delta);
}
static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
const struct rtw89_sar_cfg_common *sar)
{
enum rtw89_sar_sources src;
int ret = 0;
mutex_lock(&rtwdev->mutex);
src = rtwdev->sar.src;
if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
rtw89_warn(rtwdev, "SAR source: %d is in use", src);
ret = -EBUSY;
goto exit;
}
rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
rtw89_core_set_chip_txpwr(rtwdev);
exit:
mutex_unlock(&rtwdev->mutex);
return ret;
}
static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
{ .start_freq = 2412, .end_freq = 2484, },
{ .start_freq = 5180, .end_freq = 5320, },
{ .start_freq = 5500, .end_freq = 5720, },
{ .start_freq = 5745, .end_freq = 5825, },
{ .start_freq = 5955, .end_freq = 6155, },
{ .start_freq = 6175, .end_freq = 6415, },
{ .start_freq = 6435, .end_freq = 6515, },
{ .start_freq = 6535, .end_freq = 6695, },
{ .start_freq = 6715, .end_freq = 6875, },
{ .start_freq = 6875, .end_freq = 7115, },
};
static_assert(RTW89_SAR_SUBBAND_NR ==
ARRAY_SIZE(rtw89_common_sar_freq_ranges));
const struct cfg80211_sar_capa rtw89_sar_capa = {
.type = NL80211_SAR_TYPE_POWER,
.num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
.freq_ranges = rtw89_common_sar_freq_ranges,
};
int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
struct rtw89_dev *rtwdev = hw->priv;
struct rtw89_sar_cfg_common sar_common = {0};
u8 fct;
u32 freq_start;
u32 freq_end;
s32 power;
u32 i, idx;
if (sar->type != NL80211_SAR_TYPE_POWER)
return -EINVAL;
fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
for (i = 0; i < sar->num_sub_specs; i++) {
idx = sar->sub_specs[i].freq_range_index;
if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
return -EINVAL;
freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
power = sar->sub_specs[i].power;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
freq_start, freq_end, power, BIT(fct));
sar_common.set[idx] = true;
sar_common.cfg[idx] = power;
}
return rtw89_apply_sar_common(rtwdev, &sar_common);
}
static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
s32 dpr_on_threshold, dpr_off_threshold, cfg;
enum rtw89_tas_state state = tas->state;
const struct rtw89_chan *chan;
int ret;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE)
return;
chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
if (ret)
return;
cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
if (tas->delta >= cfg) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"TAS delta exceed SAR limit\n");
state = RTW89_TAS_STATE_DPR_FORBID;
goto out;
}
dpr_on_threshold = cfg;
dpr_off_threshold = cfg - tas->dpr_gap;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
dpr_on_threshold, dpr_off_threshold, txpwr_avg);
if (txpwr_avg >= dpr_on_threshold)
state = RTW89_TAS_STATE_DPR_ON;
else if (txpwr_avg < dpr_off_threshold)
state = RTW89_TAS_STATE_DPR_OFF;
out:
if (tas->state == state)
return;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"TAS old state: %d, new state: %d\n", tas->state, state);
tas->state = state;
rtw89_core_set_chip_txpwr(rtwdev);
}
void rtw89_tas_init(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
struct rtw89_acpi_dsm_result res = {};
int ret;
u8 val;
ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res);
if (ret) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"acpi: cannot get TAS: %d\n", ret);
return;
}
val = res.u.value;
switch (val) {
case 0:
tas->enable = false;
break;
case 1:
tas->enable = true;
break;
default:
break;
}
if (!tas->enable) {
rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
return;
}
tas->dpr_gap = RTW89_TAS_DPR_GAP;
tas->delta = RTW89_TAS_DELTA;
}
void rtw89_tas_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
if (!tas->enable)
return;
memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
tas->total_txpwr = 0;
tas->cur_idx = 0;
tas->state = RTW89_TAS_STATE_DPR_OFF;
}
static const struct rtw89_reg_def txpwr_regs[] = {
{R_PATH0_TXPWR, B_PATH0_TXPWR},
{R_PATH1_TXPWR, B_PATH1_TXPWR},
};
void rtw89_tas_track(struct rtw89_dev *rtwdev)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const enum rtw89_sar_sources src = rtwdev->sar.src;
u8 max_nss_num = rtwdev->chip->rf_path_num;
struct rtw89_tas_info *tas = &rtwdev->tas;
s16 tmp, txpwr, instant_txpwr = 0;
u32 val;
int i;
if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
return;
if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
return;
for (i = 0; i < max_nss_num; i++) {
val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
txpwr_regs[i].mask);
tmp = sign_extend32(val, 8);
if (tmp <= 0)
return;
instant_txpwr += tmp;
}
instant_txpwr /= max_nss_num;
/* in unit of 0.25 dBm multiply by percentage */
txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
tas->txpwr_history[tas->cur_idx] = txpwr;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
rtw89_tas_state_update(rtwdev);
}
#endif