-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchunk_index_utils.py
192 lines (137 loc) · 4.62 KB
/
chunk_index_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
Author: Luigi Saetta
Date created: 2024-04-27
Date last modified: 2024-04-30
Python Version: 3.11
Usage: contains the functions to split in chunks and create the index
"""
from glob import glob
from tqdm.auto import tqdm
import oracledb
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_community.vectorstores import OpenSearchVectorSearch
from langchain_community.vectorstores.oraclevs import OracleVS
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_text_splitters import RecursiveCharacterTextSplitter
from utils import get_console_logger, remove_path_from_ref
from config import (
CHUNK_SIZE,
CHUNK_OVERLAP,
OPENSEARCH_URL,
OPENSEARCH_INDEX_NAME,
COLLECTION_NAME,
)
from config_private import (
OPENSEARCH_USER,
OPENSEARCH_PWD,
DB_USER,
DB_PWD,
DB_HOST_IP,
DB_SERVICE,
)
def get_recursive_text_splitter():
"""
return a recursive text splitter
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len,
is_separator_regex=False,
)
return text_splitter
def load_book_and_split(book_path):
"""
load a single book
"""
logger = get_console_logger()
text_splitter = get_recursive_text_splitter()
loader = PyPDFLoader(file_path=book_path)
docs = loader.load_and_split(text_splitter=text_splitter)
# remove path from source
for doc in docs:
doc.metadata["source"] = remove_path_from_ref(doc.metadata["source"])
logger.info("Loaded %s chunks...", len(docs))
return docs
def add_docs_to_23ai(docs, embed_model):
"""
add docs from a book to Oracle vector store
"""
logger = get_console_logger()
try:
dsn = f"{DB_HOST_IP}:1521/{DB_SERVICE}"
connection = oracledb.connect(user=DB_USER, password=DB_PWD, dsn=dsn)
v_store = OracleVS(
client=connection,
table_name=COLLECTION_NAME,
distance_strategy=DistanceStrategy.COSINE,
embedding_function=embed_model,
)
logger.info("Saving new documents to Vector Store...")
v_store.add_documents(docs)
logger.info("Saved new documents to Vector Store !")
except oracledb.Error as e:
err_msg = "An error occurred in add_docs_to_23ai: " + str(e)
logger.error(err_msg)
def add_docs_to_opensearch(docs, embed_model):
"""
add docs from a book to opensearch vector store
"""
logger = get_console_logger()
v_store = OpenSearchVectorSearch(
embedding_function=embed_model,
opensearch_url=OPENSEARCH_URL,
http_auth=(OPENSEARCH_USER, OPENSEARCH_PWD),
use_ssl=True,
verify_certs=False,
ssl_assert_hostname=False,
ssl_show_warn=False,
bulk_size=5000,
index_name=OPENSEARCH_INDEX_NAME,
engine="faiss",
)
logger.info("Saving new documents to Vector Store...")
v_store.add_documents(docs)
logger.info("Saved new documents to Vector Store !")
def add_docs_to_faiss(docs, faiss_dir, embed_model):
"""
add docs from a book to faiss index
"""
logger = get_console_logger()
logger.info("Loading Vector Store from local dir %s...", faiss_dir)
v_store = FAISS.load_local(
faiss_dir, embed_model, allow_dangerous_deserialization=True
)
v_store.add_documents(docs)
logger.info("Saving Vector Store...")
v_store.save_local(faiss_dir)
def load_books_and_split(books_dir) -> list:
"""
load a set of books from books_dir and split in chunks
"""
logger = get_console_logger()
logger.info("Loading documents from %s...", books_dir)
text_splitter = get_recursive_text_splitter()
books_list = sorted(glob(books_dir + "/*.pdf"))
logger.info("Loading books: ")
for book in books_list:
logger.info("* %s", book)
docs = []
for book in tqdm(books_list):
loader = PyPDFLoader(file_path=book)
docs += loader.load_and_split(text_splitter=text_splitter)
logger.info("Loaded %s chunks of text...", len(docs))
return docs
def load_and_rebuild_faiss_index(faiss_dir, books_dir, embed_model):
"""
load all the books and rebuild the faiss index
"""
logger = get_console_logger()
logger.info("local_dir is: %s ...", faiss_dir)
docs = load_books_and_split(books_dir)
logger.info("Embedding chunks...")
v_store = FAISS.from_documents(docs, embed_model)
logger.info("Saving Vector Store...")
v_store.save_local(faiss_dir)
return v_store