-
Notifications
You must be signed in to change notification settings - Fork 0
/
simplest-nn-1-hidden-layer.py
65 lines (49 loc) · 1.56 KB
/
simplest-nn-1-hidden-layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
```
Target is to train model X->y
```
# sigmoid function
# True: f(x) = 1/(1+e^(-x))
# False: f'(x) = f(x)(1-f(x))
def sigmoid(x,deriv=False):
if(deriv==True): # derivative function: y*(1-y)
return x*(1-x)
else: # origin function
return 1/(1+np.exp(-x))
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
y = np.array([[0],
[1],
[1],
[0]])
np.random.seed(1)
# randomly initialize our weights with mean 0
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
# Feed forward through layers 0, 1, and 2
l0 = X # layer 0 - input
l1 = sigmoid(np.dot(l0,syn0)) # layer 1 - hidden layer with syn0
l2 = sigmoid(np.dot(l1,syn1)) # layer 2 - output with syn1
# how much did we miss the target value?
l2_error = y - l2
if (j% 10000) == 0:
print "Error:" + str(np.mean(np.abs(l2_error)))
# in what direction is the target value?
# were we really sure? if so, don't change too much.
l2_delta = l2_error*sigmoid(l2,deriv=True)
# how much did each l1 value contribute to the l2 error (according to the weights)?
l1_error = l2_delta.dot(syn1.T)
# in what direction is the target l1?
# were we really sure? if so, don't change too much.
l1_delta = l1_error * sigmoid(l1,deriv=True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print
print "Weights after Training: l1(3X4), l2(4X1)"
print syn0
print syn1
print "Output After Training:"
print l2