-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathProgram5_A_star.py
94 lines (78 loc) · 2.62 KB
/
Program5_A_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -----------
# User Instructions:
#
# Modify the the search function so that it becomes
# an A* search algorithm as defined in the previous
# lectures.
#
# Your function should return the expanded grid
# which shows, for each element, the count when
# it was expanded or -1 if the element was never expanded.
#
# If there is no path from init to goal,
# the function should return the string 'fail'
# ----------
grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]]
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]
init = [0, 0]
goal = [len(grid) - 1, len(grid[0]) - 1]
cost = 1
delta = [[-1, 0], # go up
[0, -1], # go left
[1, 0], # go down
[0, 1]] # go right
delta_name = ['^', '<', 'v', '>']
def search(grid, init, goal, cost, heuristic):
# ----------------------------------------
# modify the code below
# ----------------------------------------
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]
closed[init[0]][init[1]] = 1
expand = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
action = [[-1 for col in range(len(grid[0]))] for row in range(len(grid))]
x = init[0]
y = init[1]
g = 0
h = heuristic[x][y]
f = g + h
open = [[f, g, h, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
count = 0
while not found and not resign:
if len(open) == 0:
resign = True
return "Fail"
else:
open.sort()
open.reverse()
next = open.pop()
x = next[3]
y = next[4]
g = next[1]
expand[x][y] = count
count += 1
if x == goal[0] and y == goal[1]:
found = True
else:
min_f = float("inf")
for i in range(len(delta)):
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >= 0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
h2 = heuristic[x2][y2]
f2 = g2 + h2
open.append([f2, g2, h2, x2, y2])
closed[x2][y2] = 1
return expand
print search(grid, init, goal, cost, heuristic)