-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_stream.py
150 lines (121 loc) · 3.98 KB
/
api_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import json
import os
import sys
import argparse
import torch
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM
from utils.prompter import Prompter
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
import uvicorn
app = FastAPI()
class InferenceInput(BaseModel):
instruction: str
global_model = None
global_tokenizer = None
global_prompter = None
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def load_model(base_model, lora_weights, load_8bit):
print(base_model)
print(lora_weights)
print(load_8bit)
global device
tokenizer = LlamaTokenizer.from_pretrained(base_model)
print(device)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
# load_in_4bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
if not load_8bit:
model.half()
model.config.pad_token_id = tokenizer.pad_token_id = 0
model.config.bos_token_id = 1
model.config.eos_token_id = 2
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
return model, tokenizer, Prompter("")
def evaluate(model, tokenizer, prompter, instruction):
prompt = prompter.generate_prompt(instruction, "")
# print("==============prompt==============")
# print(prompt)
# print("==================================")
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
max_new_tokens=1024,
do_sample=True,
top_p=0.75,
# temperature=0.1,
temperature=0.6,
top_k=40,
num_beams=4,
return_dict_in_generate=True,
output_scores=True,
)
output = tokenizer.decode(generation_output.sequences[0])
print("==============output==============")
print(output)
print("==================================\n\n\n")
return prompter.get_response(output)
@app.post("/stream/")
async def create_item(request: Request):
try:
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get('prompt')
history = json_post_list.get('history')
response = evaluate(global_model, global_tokenizer, global_prompter, prompt)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--base_model', type=str, required=True)
parser.add_argument('--lora_weights', type=str)
parser.add_argument('--load_8bit', action='')
args = parser.parse_args()
global_model, global_tokenizer, global_prompter = load_model(args.base_model, args.lora_weights, args.load_8bit)
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)