-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_descriptor.py
353 lines (312 loc) · 18.2 KB
/
train_descriptor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
'''
Author: Xingtong Liu, Maia Stiber, Jindan Huang, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, and Mathias Unberath
Copyright (C) 2020 Johns Hopkins University - All Rights Reserved
You may use, distribute and modify this code under the
terms of the GNU GENERAL PUBLIC LICENSE Version 3 license for non-commercial usage.
You should have received a copy of the GNU GENERAL PUBLIC LICENSE Version 3 license with
this file. If not, please write to: [email protected] or [email protected]
'''
import argparse
import multiprocessing
import cv2
from pathlib import Path
import torch
import numpy as np
import random
import datetime
from tensorboardX import SummaryWriter
import torchsummary
import tqdm
import math
# local import
import utils
import dataset
import models
import losses
if __name__ == '__main__':
multiprocessing.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser(
description='Dense descriptor training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--adjacent_range', nargs='+', type=int, required=True,
help='interval range for a pair of video frames')
parser.add_argument('--image_downsampling', type=float, default=4.0,
help='input image downsampling rate for training acceleration')
parser.add_argument('--network_downsampling', type=int, default=64,
help='network downsampling rate')
parser.add_argument('--input_size', nargs='+', type=int, required=True,
help='input size')
parser.add_argument('--batch_size', type=int, default=8, help='batch size of input samples')
parser.add_argument('--num_workers', type=int, default=8, help='number of workers for data loader')
parser.add_argument('--lr_range', nargs='+', type=float, required=True,
help='lower and upper bound learning rate for cyclic lr')
parser.add_argument('--inlier_percentage', type=float, default=0.998,
help='percentage of inliers of SfM point clouds (for pruning extreme outliers)')
parser.add_argument('--display_interval', type=int, default=10, help='iteration interval of image display')
parser.add_argument('--validation_interval', type=int, default=1, help='iteration interval for validation')
parser.add_argument('--training_patient_id', nargs='+', type=int, required=True,
help='id of the training patient')
parser.add_argument('--load_intermediate_data', action='store_true',
help='whether or not to load intermediate data')
parser.add_argument('--load_trained_model', action='store_true', help='whether or not to load trained model')
parser.add_argument('--num_epoch', type=int, required=True, help='number of epochs in total')
parser.add_argument('--num_iter', type=int, required=True, help='maximum number of iterations per epoch')
parser.add_argument('--heatmap_sigma', type=float, default=5.0,
help='sigma of heatmap for ground truth visualization')
parser.add_argument('--visibility_overlap', type=int, default=20, help='overlap of point visibility information')
parser.add_argument('--display_architecture', action='store_true', help='display the network architecture')
parser.add_argument('--trained_model_path', type=str, default=None, help='path to the trained model')
parser.add_argument('--data_root', type=str, required=True, help='path to the training data')
parser.add_argument('--sampling_size', type=int, default=10,
help='number of positive sample pairs per iteration')
parser.add_argument('--log_root', type=str, required=True, help='root of logging')
parser.add_argument('--feature_length', type=int, default=128, help='output channel dimension of network')
parser.add_argument('--filter_growth_rate', type=int, default=10, help='filter growth rate of network')
parser.add_argument('--matching_scale', type=float, default=20.0, help='scale for soft thresholding')
parser.add_argument('--matching_threshold', type=float, default=0.9, help='threshold for soft thresholding')
parser.add_argument('--rr_weight', type=float, default=1.0, help='weight of relative response loss')
parser.add_argument('--cross_check_distance', type=float, default=5.0, help='cross check distance for '
'pair-wise feature matching pruning')
parser.add_argument('--precompute_root', type=str, required=True, help='root of the pre-compute data')
args = parser.parse_args()
load_trained_model = args.load_trained_model
if load_trained_model:
if args.trained_model_path is not None:
trained_model_path = Path(args.trained_model_path)
else:
raise IOError
else:
trained_model_path = None
log_root = Path(args.log_root)
current_date = datetime.datetime.now()
if not Path(args.data_root).exists():
print("specified training data root does not exist")
raise IOError
# Fix randomness for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(10085)
np.random.seed(10085)
random.seed(10085)
if not log_root.exists():
log_root.mkdir()
log_root = log_root / "dense_descriptor_train_{}_{}_{}_{}".format(current_date.month, current_date.day,
current_date.hour,
current_date.minute)
writer = SummaryWriter(logdir=str(log_root))
print("Created tensorboard visualization at {}".format(str(log_root)))
if not Path(args.precompute_root).exists():
Path(args.precompute_root).mkdir(parents=True)
train_filenames = \
utils.get_color_file_names_by_bag(root=Path(args.data_root), id_list=args.training_patient_id)
sequence_path_list = utils.get_parent_folder_names(Path(args.data_root), id_list=args.training_patient_id)
# Build training and validation dataset
train_dataset = dataset.DescriptorDataset(image_file_names=train_filenames,
folder_list=sequence_path_list,
adjacent_range=args.adjacent_range,
image_downsampling=args.image_downsampling,
inlier_percentage=args.inlier_percentage,
network_downsampling=args.network_downsampling,
load_intermediate_data=args.load_intermediate_data,
intermediate_data_root=Path(args.precompute_root),
sampling_size=args.sampling_size,
heatmap_sigma=args.heatmap_sigma,
num_pre_workers=args.num_workers,
visible_interval=args.visibility_overlap,
num_iter=args.num_iter)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers)
val_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
feature_descriptor_model = models.FCDenseNetFeature(
in_channels=3, down_blocks=(3, 3, 3, 3, 3),
up_blocks=(3, 3, 3, 3, 3), bottleneck_layers=4,
growth_rate=args.filter_growth_rate, out_chans_first_conv=16, feature_length=args.feature_length)
# Initialize the network with Kaiming He initialization
utils.init_net(feature_descriptor_model, type="kaiming", mode="fan_in", activation_mode="relu",
distribution="normal")
# Multi-GPU running
feature_descriptor_model = torch.nn.DataParallel(feature_descriptor_model)
# Summary network architecture
if args.display_architecture:
torchsummary.summary(feature_descriptor_model, input_size=(3, args.input_size[0], args.input_size[1]))
# Optimizer
optimizer = torch.optim.SGD(feature_descriptor_model.parameters(), lr=args.lr_range[1], momentum=0.9)
lr_scheduler = models.CyclicLR(optimizer, base_lr=args.lr_range[0], max_lr=args.lr_range[1])
# Loss functions
response_map_generator = models.FeatureResponseGenerator(scale=args.matching_scale,
threshold=args.matching_threshold)
relative_response_loss = losses.RelativeResponseLoss()
# Validation metric
matching_accuracy_metric = losses.MatchingAccuracyMetric(threshold=5)
# Load trained model
if load_trained_model:
if trained_model_path.exists():
print("Loading {:s} ...".format(str(trained_model_path)))
pre_trained_state = torch.load(str(trained_model_path))
step = pre_trained_state['step']
epoch = pre_trained_state['epoch']
model_state = feature_descriptor_model.state_dict()
trained_model_state = {k: v for k, v in pre_trained_state["model"].items() if k in model_state}
model_state.update(trained_model_state)
feature_descriptor_model.load_state_dict(model_state)
print('Restored model, epoch {}, step {}'.format(epoch, step))
else:
print("No trained model detected")
raise OSError
else:
epoch = 0
step = 0
validation_step = 0
sift = cv2.xfeatures2d.SIFT_create(nfeatures=1000, nOctaveLayers=8,
contrastThreshold=0.00005,
edgeThreshold=100, sigma=1.1)
for cur_epoch in range(epoch, args.num_epoch + 1):
# Set the seed correlated to epoch for reproducibility
torch.manual_seed(10086 + cur_epoch)
np.random.seed(10086 + cur_epoch)
random.seed(10086 + cur_epoch)
feature_descriptor_model.train()
# Update progress bar
tq = tqdm.tqdm(total=len(train_loader) * args.batch_size)
for batch, (
colors_1, colors_2,
feature_1D_locations_1,
feature_1D_locations_2,
feature_2D_locations_1,
feature_2D_locations_2,
gt_heatmaps_1,
gt_heatmaps_2,
boundaries,
folders, names
) in \
enumerate(train_loader):
# Update learning rate
lr_scheduler.batch_step(batch_iteration=step)
tq.set_description('Epoch {}, lr {}'.format(cur_epoch, lr_scheduler.get_lr()))
colors_1, colors_2, \
feature_1D_locations_1, feature_1D_locations_2, \
feature_2D_locations_1, feature_2D_locations_2, \
boundaries = colors_1.cuda(), colors_2.cuda(), \
feature_1D_locations_1.cuda(), feature_1D_locations_2.cuda(), \
feature_2D_locations_1.cuda(), feature_2D_locations_2.cuda(), \
boundaries.cuda()
feature_maps_1 = feature_descriptor_model(colors_1)
feature_maps_2 = feature_descriptor_model(colors_2)
response_map_2 = response_map_generator(
[feature_maps_1, feature_maps_2, feature_1D_locations_1, boundaries])
response_map_1 = response_map_generator(
[feature_maps_2, feature_maps_1, feature_1D_locations_2, boundaries])
rr_loss_1 = relative_response_loss(
[response_map_1, feature_1D_locations_1, boundaries])
rr_loss_2 = relative_response_loss(
[response_map_2, feature_1D_locations_2, boundaries])
rr_loss = args.rr_weight * (0.5 * rr_loss_1 + 0.5 * rr_loss_2)
# Handle nan cases
if math.isnan(rr_loss.item()) or math.isinf(rr_loss.item()):
optimizer.zero_grad()
rr_loss.backward()
optimizer.zero_grad()
tq.update(args.batch_size)
continue
else:
optimizer.zero_grad()
rr_loss.backward()
torch.nn.utils.clip_grad_norm_(feature_descriptor_model.parameters(), 10.0)
optimizer.step()
if batch == 0:
mean_rr_loss = np.mean(rr_loss.item())
else:
mean_rr_loss = (mean_rr_loss * batch + rr_loss.item()) / (batch + 1.0)
# Result display
if batch % args.display_interval == 0:
with torch.no_grad():
gt_heatmaps_1 = gt_heatmaps_1.cuda()
gt_heatmaps_2 = gt_heatmaps_2.cuda()
display_success = utils.display_results(colors_1, colors_2, feature_maps_1, feature_maps_2,
boundaries, response_map_1,
gt_heatmaps_1, response_map_2, gt_heatmaps_2,
sift, args.cross_check_distance, step,
writer, phase="Train")
step += 1
tq.update(colors_1.shape[0])
tq.set_postfix(loss='average: {:.5f}, current: {:.5f}'.format(mean_rr_loss, rr_loss.item())
)
writer.add_scalars('Train', {'loss': mean_rr_loss}, step)
tq.close()
if cur_epoch % args.validation_interval != 0:
continue
# Validation
feature_descriptor_model.eval()
# Update progress bar
tq = tqdm.tqdm(total=len(val_loader) * args.batch_size)
torch.manual_seed(10086)
np.random.seed(10086)
random.seed(10086)
with torch.no_grad():
for batch, (
colors_1, colors_2,
feature_1D_locations_1,
feature_1D_locations_2,
feature_2D_locations_1,
feature_2D_locations_2,
gt_heatmaps_1,
gt_heatmaps_2,
boundaries,
folders, names
) in enumerate(val_loader):
tq.set_description('Validation Epoch {}'.format(cur_epoch))
colors_1, colors_2, \
feature_1D_locations_1, feature_1D_locations_2, \
feature_2D_locations_1, feature_2D_locations_2, \
boundaries = colors_1.cuda(), colors_2.cuda(), \
feature_1D_locations_1.cuda(), feature_1D_locations_2.cuda(), \
feature_2D_locations_1.cuda(), feature_2D_locations_2.cuda(), \
boundaries.cuda()
feature_maps_1 = feature_descriptor_model(colors_1)
feature_maps_2 = feature_descriptor_model(colors_2)
response_map_2 = response_map_generator(
[feature_maps_1, feature_maps_2, feature_1D_locations_1, boundaries])
response_map_1 = response_map_generator(
[feature_maps_2, feature_maps_1, feature_1D_locations_2, boundaries])
# Result display
if batch % args.display_interval == 0:
gt_heatmaps_1 = gt_heatmaps_1.cuda()
gt_heatmaps_2 = gt_heatmaps_2.cuda()
display_success = utils.display_results(colors_1, colors_2, feature_maps_1, feature_maps_2,
boundaries, response_map_1,
gt_heatmaps_1, response_map_2, gt_heatmaps_2,
sift, args.cross_check_distance, validation_step,
writer, phase="Validation")
ratio_1, ratio_2, ratio_3 = matching_accuracy_metric(
[response_map_1, feature_2D_locations_1, boundaries])
ratio_4, ratio_5, ratio_6 = matching_accuracy_metric(
[response_map_2, feature_2D_locations_2, boundaries])
accuracy_1 = 0.5 * ratio_1 + 0.5 * ratio_4
accuracy_2 = 0.5 * ratio_2 + 0.5 * ratio_5
accuracy_3 = 0.5 * ratio_3 + 0.5 * ratio_6
if batch == 0:
mean_accuracy_1 = np.mean(accuracy_1.item())
mean_accuracy_2 = np.mean(accuracy_2.item())
mean_accuracy_3 = np.mean(accuracy_3.item())
else:
mean_accuracy_1 = (mean_accuracy_1 * batch + accuracy_1.item()) / (batch + 1.0)
mean_accuracy_2 = (mean_accuracy_2 * batch + accuracy_2.item()) / (batch + 1.0)
mean_accuracy_3 = (mean_accuracy_3 * batch + accuracy_3.item()) / (batch + 1.0)
validation_step += 1
tq.update(colors_1.shape[0])
tq.set_postfix(
accuracy_1='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_1, accuracy_1.item()),
accuracy_2='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_2, accuracy_2.item()),
accuracy_3='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_3, accuracy_3.item())
)
writer.add_scalars('Validation', {'accuracy_1': mean_accuracy_1, 'accuracy_2': mean_accuracy_2,
'accuracy_3': mean_accuracy_3}, validation_step)
tq.close()
model_path_epoch = log_root / \
'checkpoint_model_epoch_{}_{}_{}_{}.pt'.format(cur_epoch, mean_accuracy_1,
mean_accuracy_2, mean_accuracy_3)
utils.save_model(model=feature_descriptor_model, optimizer=optimizer,
epoch=cur_epoch + 1, step=step, model_path=model_path_epoch,
validation_loss=mean_accuracy_1)
writer.close()