-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrainer.py
189 lines (146 loc) · 6.04 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import math
from decimal import Decimal
import utility
import torch
import torch.nn as nn
from torch.autograd import Variable
from tqdm import tqdm
import scipy.io as sio
from data import common
import numpy as np
# import model
class Trainer():
def __init__(self, args, loader, my_model, my_loss, ckp):
self.args = args
self.scale = args.scale
self.ckp = ckp
self.loader_train = loader.loader_train
self.loader_test = loader.loader_test
self.model = my_model
self.loss = my_loss
self.optimizer = utility.make_optimizer(args, self.model)
self.scheduler = utility.make_scheduler(args, self.optimizer)
if self.args.load != '.':
self.optimizer.load_state_dict(
torch.load(os.path.join(ckp.dir, 'optimizer.pt'))
)
for _ in range(len(ckp.log)): self.scheduler.step()
self.error_last = 1e5
def train(self):
self.scheduler.step()
self.loss.step()
epoch = self.scheduler.last_epoch + 1
lr = self.scheduler.get_lr()[0]
self.ckp.write_log(
'[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
)
self.loss.start_log()
self.model.train()
# self.model_NLEst.train()
# self.model_KMEst.train()
timer_data, timer_model = utility.timer(), utility.timer()
for batch, (lr, hr, _) in enumerate(self.loader_train):
lr, hr = self.prepare([lr, hr])
# print(scale_factor[0,0,0,0])
timer_data.hold()
timer_model.tic()
# _, _, hei, wid = hr.data.size()
self.optimizer.zero_grad()
idx_scale = 0
sr = self.model(lr, idx_scale)
loss = self.loss(sr, hr)
if loss.item() < self.args.skip_threshold * self.error_last:
loss.backward()
self.optimizer.step()
else:
print('Skip this batch {}! (Loss: {})'.format(
batch + 1, loss.item()
))
timer_model.hold()
if (batch + 1) % self.args.print_every == 0:
self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
(batch + 1) * self.args.batch_size,
len(self.loader_train.dataset),
self.loss.display_loss(batch),
timer_model.release(),
timer_data.release()))
timer_data.tic()
self.loss.end_log(len(self.loader_train))
self.error_last = self.loss.log[-1, -1]
def test(self):
epoch = self.scheduler.last_epoch + 1
self.ckp.write_log('\nEvaluation:')
# kernel_test = sio.loadmat('data/Compared_kernels_JPEG_noise_x234.mat')
scale_list = self.scale #[2,3,4,8]
self.ckp.add_log(torch.zeros(1, len(scale_list)))
self.model.eval()
no_eval = 0
# self.model_NLEst.eval()
# self.model_KMEst.eval()
timer_test = utility.timer()
with torch.no_grad():
for idx_scale, scale in enumerate(scale_list):
eval_acc = 0
self.loader_test.dataset.set_scale(idx_scale)
tqdm_test = tqdm(self.loader_test, ncols=120)
for idx_img, (lr, hr, filename) in enumerate(tqdm_test):
filename = filename[0]
# sz = lr.size()
# scale_tensor = torch.ones([1, 1, sz[2], sz[3]]).float() * (scale / 80.0)
if not no_eval:
lr, hr = self.prepare([lr, hr])
else:
lr = self.prepare([lr])[0]
#sz = lr.size()
#scale_tensor = torch.ones([1, 1, sz[2], sz[3]]).float() * (2.0 / 80)
# print(lr.size())
# hr_ = torch.squeeze(hr_)
# hr_ = hr_.numpy()
# lr = hr
sr = self.model(lr, idx_scale)
sr = utility.quantize(sr, self.args.rgb_range)
save_list = [sr]
eval_acc += utility.calc_psnr(
sr, hr, scale, self.args.rgb_range,
benchmark=self.loader_test.dataset.benchmark
)
save_list.extend([lr, hr])
# # if not no_eval:
# # eval_acc += utility.calc_psnr(
# # sr, hr, scale, self.args.rgb_range,
# # benchmark=self.loader_test.dataset.benchmark
# # )
# # save_list.extend([lr, hr])
#
if self.args.save_results:
self.ckp.save_results(filename, save_list, idx_img, scale)
self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
best = self.ckp.log.max(0)
self.ckp.write_log(
'[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
self.args.data_test,
scale,
self.ckp.log[-1, idx_scale],
best[0][idx_scale],
best[1][idx_scale] + 1
)
)
self.ckp.write_log(
'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
)
if not self.args.test_only:
self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch))
def prepare(self, l, volatile=False):
device = torch.device('cpu' if self.args.cpu else 'cuda')
def _prepare(tensor):
if self.args.precision == 'half': tensor = tensor.half()
return tensor.to(device)
return [_prepare(_l) for _l in l]
def terminate(self):
if self.args.test_only:
self.test()
return True
else:
epoch = self.scheduler.last_epoch + 1
return epoch >= self.args.epochs