-
Notifications
You must be signed in to change notification settings - Fork 13
/
tflog_utils.py
50 lines (37 loc) · 1.51 KB
/
tflog_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import tensorflow as tf
def log_histogram(summary, tag, values, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
summary.value.add(tag=tag, histo=hist)
def log_text(writer, tag, text):
text_tensor = tf.make_tensor_proto(text, dtype=tf.string)
meta = tf.SummaryMetadata()
meta.plugin_data.plugin_name = "text"
summary = tf.Summary()
summary.value.add(tag=tag, metadata=meta, tensor=text_tensor)
writer.add_summary(summary)
def log_scalar(summary: tf.Summary, tag, value):
summary.value.add(tag=tag, simple_value=value)
def log_scalars(**kwargs):
for key, value in kwargs.items():
tf.summary.scalar(key, value)