forked from IndigoFloyd/SoybeanWebsite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlexNet_206_p.py
122 lines (91 loc) · 4.03 KB
/
AlexNet_206_p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
from torch import nn
from torch.nn import Module
class CA_Block(nn.Module):
def __init__(self, channel, h, w, reduction=16):
super(CA_Block, self).__init__()
self.h = h
self.w = w
self.avg_pool_x = nn.AdaptiveAvgPool2d((h, 1))
self.avg_pool_y = nn.AdaptiveAvgPool2d((1, w))
self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(channel//reduction)
self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
self.sigmoid_h = nn.Sigmoid()
self.sigmoid_w = nn.Sigmoid()
def forward(self, x):
x_h = self.avg_pool_x(x).permute(0, 1, 3, 2)
x_w = self.avg_pool_y(x)
x_cat_conv_relu = self.relu(self.conv_1x1(torch.cat((x_h, x_w), 3)))
x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([self.h, self.w], 3)
s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2)))
s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w))
out = x * s_h.expand_as(x) * s_w.expand_as(x)
return out
class AlexNet(nn.Module):
def __init__(self,num_class):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(3,32,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(32),
nn.Dropout(0.3),
nn.ReLU(),
CA_Block(32,206,206,reduction=16),
nn.Conv2d(32,64,kernel_size=4,padding=1,padding_mode='reflect',stride=2,bias=False),
nn.BatchNorm2d(64),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(64,64,kernel_size=3,padding=1,padding_mode='reflect',stride=2,bias=False),
nn.BatchNorm2d(64),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(64,64,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(64),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(64,128,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(128),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(128,128,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(128),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(128,256,kernel_size=2,stride=2,bias=False),
nn.BatchNorm2d(256),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(256,256,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(256),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(256,512,kernel_size=2,stride=2,bias=False),
nn.BatchNorm2d(512),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(512,512,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(512),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(512,1024,kernel_size=3,padding=1,padding_mode='reflect',stride=2,bias=False),
nn.BatchNorm2d(1024),
nn.Dropout(0.3),
nn.ReLU(),
nn.Conv2d(1024,1024,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
nn.BatchNorm2d(1024),
nn.Dropout(0.3),
nn.ReLU(),
CA_Block(1024,7,7,reduction=16),
nn.Flatten(),
nn.Dropout(0.3),
nn.ReLU(),
# nn.Linear(50176,6400),
# nn.Dropout(0.4),
# nn.ReLU(),
nn.Linear(50176,num_class),
)
def modules(self):
model_name = 'AlexNet_deep'
return self.net,model_name