-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdatasets.py
160 lines (139 loc) · 5.45 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Return training and evaluation/test datasets from config files."""
import json
import os
import os.path
import pickle
import sys
import numpy as np
import torch
import torch.nn as nn
import torchvision.datasets as vdsets
import torchvision.transforms as transforms
from torchvision.transforms.functional import InterpolationMode
from PIL import Image
from torch.utils.data import Dataset, DataLoader, DistributedSampler, TensorDataset
def identity(x):
return x
def cycle_loader(dataloader, sampler=None):
while 1:
if sampler is not None:
sampler.set_epoch(np.random.randint(0, 100000))
for data in dataloader:
yield data
# fast class to load all images
class ImageFolderFast(vdsets.VisionDataset):
def __init__(self, root, transform=None):
super().__init__(root, transform=transform)
self.image_paths = os.listdir(root)
self.transform = transform
def __getitem__(self, index):
image_path = os.path.join(self.root, self.image_paths[index])
with open(image_path, "rb") as f:
img = Image.open(f)
x = img.convert("RGB")
if self.transform is not None:
x = self.transform(x)
return x, #needed to make it consistent: index dataset[0][0] for image
def __len__(self):
return len(self.image_paths)
# fast class to load all images
class ImageFolderClassFast(vdsets.VisionDataset):
def __init__(self, root, transform=None):
super().__init__(root, transform=transform)
with open(os.path.join(root, "dataset.json"), "r") as f:
self.image_paths = json.load(f)["labels"]
self.transform = transform
def __getitem__(self, index):
pair = self.image_paths[index]
image_path = os.path.join(self.root, pair[0])
with open(image_path, "rb") as f:
img = Image.open(f)
x = img.convert("RGB")
if self.transform is not None:
x = self.transform(x)
return x, pair[1]
def __len__(self):
return len(self.image_paths)
def get_dataset(config, evaluation=False, distributed=True):
dataroot = config.dataroot
if config.data.dataset == "CIFAR10":
train_transforms = transforms.Compose(
[
transforms.Resize(config.data.image_size),
transforms.RandomHorizontalFlip() if config.data.random_flip else identity,
transforms.ToTensor(),
]
)
test_transforms = transforms.Compose(
[
transforms.Resize(config.data.image_size),
transforms.ToTensor(),
]
)
train_set = vdsets.CIFAR10(dataroot, train=True, transform=train_transforms)
test_set = vdsets.CIFAR10(dataroot, train=False, transform=test_transforms)
workers = 2
elif config.data.dataset == "ImageNet32":
data_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
train_set = ImageFolderFast(os.path.join(dataroot, "ds_imagenet", "train_32x32"), transform=data_transforms)
test_set = ImageFolderFast(os.path.join(dataroot, "ds_imagenet", "valid_32x32"), transform=data_transforms)
workers = 4
elif config.data.dataset == "ImageNet64C":
data_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
train_set = ImageFolderClassFast(os.path.join(dataroot, "imagenet-64x64", "train"), transform=data_transforms)
test_set = ImageFolderClassFast(os.path.join(dataroot, "imagenet-64x64", "valid"), transform=data_transforms)
workers = 4
else:
raise ValueError(f"{config.data.dataset} is not valid")
if evaluation:
if distributed:
sampler = DistributedSampler(test_set, shuffle=False)
else:
sampler = None
test_loader = DataLoader(
test_set,
batch_size=config.eval.batch_size,
sampler=sampler,
num_workers=workers,
pin_memory=True,
shuffle=(sampler is None)
)
return test_loader
else:
if config.training.batch_size % config.ngpus != 0:
raise ValueError(f"Train Batch Size {config.training.batch_size} is not divisible by {config.ngpus} gpus.")
if config.eval.batch_size % config.ngpus != 0:
raise ValueError(f"Eval Batch Size {config.eval.batch_size} is not divisible by {config.ngpus} gpus.")
if distributed:
train_sampler = DistributedSampler(train_set)
test_sampler = DistributedSampler(test_set)
else:
train_sampler = None
test_sampler = None
train_loader = DataLoader(
train_set,
batch_size=config.training.batch_size // config.ngpus,
sampler=train_sampler,
num_workers=workers,
pin_memory=True,
shuffle=(train_sampler is None),
persistent_workers=True if workers > 0 else False,
)
test_loader = DataLoader(
test_set,
batch_size=config.eval.batch_size // config.ngpus,
sampler=test_sampler,
num_workers=workers,
pin_memory=True,
shuffle=(test_sampler is None),
)
train_loader, test_loader = cycle_loader(train_loader, train_sampler), cycle_loader(test_loader, test_sampler)
return train_loader, test_loader