-
Notifications
You must be signed in to change notification settings - Fork 10
/
neural_network.py
209 lines (173 loc) · 4.24 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class Generator(object):
"""
Interface for a generator. The generator should take in
a state and random seed and outputs a reward distrbution
over actions
"""
@property
def input_state(self):
"""
The input state
Returns
-------
A placeholder tensor: the input state's placeholder tensor
"""
pass
@property
def output(self):
"""
The outputted action distribution
Returns
-------
A tensor: the output tensor
"""
pass
@property
def sess(self):
"""
The session used to create the graph
Returns
-------
A session: the graph's session
"""
pass
@property
def input_seed(self):
"""
The input random seed
Returns
-------
A placeholder: the input seed's placeholder tensor
"""
pass
@property
def trainable_variables(self):
"""
A list of the trainable variables in our generator
Returns
-------
A list of tensors: the trainable variables in this graph
"""
pass
class Discriminator(object):
"""
Interface for a discriminator. The discriminator should take in
a state, action, and expected reward and return a probability
value
"""
@property
def input_state(self):
"""
The input state
Returns
-------
A placeholder tensor: the input state's placeholder tensor
"""
pass
@property
def input_action(self):
"""
The input action
Returns
-------
A placeholder tensor: the input action's placeholder tensor
"""
pass
@property
def output(self):
"""
The probability output
Returns
-------
A tensor: the output's tensor
"""
pass
@property
def sess(self):
"""
The session used to create a graph
Returns
-------
A session: the graph's session
"""
pass
@property
def input_reward(self):
"""
The input reward
Returns
-------
A placeholder tensor: the input reward's tensor
"""
pass
@property
def trainable_variables(self):
"""
A list of the trainable variables in our generator
Returns
-------
A list of tensors: the trainable variables in this graph
"""
pass
class Discriminator_copy(object):
"""
Interface for copying a discriminator (used for Loss function).
The discriminator_copy object should be initialized by a discriminator
and a new reward placeholder. This new discriminator should share weights
and other variables with the original dis, but should be run on the
new_rew_input.
"""
def __init__(self, dis, new_rew_input):
"""
Initializes a discriminator_copy object
Args
----
dis (Discriminator) : The discriminator to copy
new_rew_input (tf.placeholder) : a new reward input.
"""
pass
@property
def input_state(self):
"""
The input state
Returns
-------
A placeholder tensor: the input state's placeholder tensor
"""
pass
@property
def input_action(self):
"""
The input action
Returns
-------
A placeholder tensor: the input action's placeholder tensor
"""
pass
@property
def output(self):
"""
The outputted action distribution
Returns
-------
A tensor: the output tensor
"""
pass
@property
def sess(self):
"""
The session used to create a graph
Returns
-------
A session: the graph's session
"""
pass
@property
def trainable_variables(self):
"""
A list of the trainable variables in our generator
Returns
-------
A list of tensors: the trainable variables in this graph
"""
pass