-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_GMM_and_compute_EVE_scores.py
192 lines (170 loc) · 15.4 KB
/
train_GMM_and_compute_EVE_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import numpy as np
import pandas as pd
import argparse
import pickle
import tqdm
import json
from sklearn import mixture, linear_model, svm, gaussian_process
from utils import performance_helpers as ph, plot_helpers
if __name__=='__main__':
parser = argparse.ArgumentParser(description='GMM fit and EVE scores computation')
parser.add_argument('--input_evol_indices_location', type=str, help='Folder where all individual files with evolutionary indices are stored')
parser.add_argument('--input_evol_indices_filename_suffix', type=str, default='', help='Suffix that was added when generating the evol indices files')
parser.add_argument('--protein_list', type=str, help='List of proteins to be included (one per row)')
parser.add_argument('--output_eve_scores_location', type=str, help='Folder where all EVE scores are stored')
parser.add_argument('--output_eve_scores_filename_suffix', default='', type=str, help='(Optional) Suffix to be added to output filename')
parser.add_argument('--load_GMM_models', default=False, action='store_true', help='If True, load GMM model parameters. If False, train GMMs from evol indices files')
parser.add_argument('--GMM_parameter_location', default=None, type=str, help='Folder where GMM objects are stored if loading / to be stored if we are re-training')
parser.add_argument('--GMM_parameter_filename_suffix', default=None, type=str, help='Suffix of GMMs model files to load')
parser.add_argument('--protein_GMM_weight', default=0.3, type=float, help='Value of global-local GMM mixing parameter')
parser.add_argument('--compute_EVE_scores', default=False, action='store_true', help='Computes EVE scores and uncertainty metrics for all input protein mutations')
parser.add_argument('--recompute_uncertainty_threshold', default=False, action='store_true', help='Recompute uncertainty thresholds based on all evol indices in file. Otherwise loads default threhold.')
parser.add_argument('--default_uncertainty_threshold_file_location', default='./utils/default_uncertainty_threshold.json', type=str, help='Location of default uncertainty threholds.')
parser.add_argument('--plot_histograms', default=False, action='store_true', help='Plots all evol indices histograms with GMM fits')
parser.add_argument('--plot_scores_vs_labels', default=False, action='store_true', help='Plots EVE scores Vs labels at each protein position')
parser.add_argument('--labels_file_location', default=None, type=str, help='File with ground truth labels for all proteins of interest (e.g., ClinVar)')
parser.add_argument('--plot_location', default=None, type=str, help='Location of the different plots')
parser.add_argument('--verbose', action='store_true', help='Print detailed information during run')
args = parser.parse_args()
mapping_file = pd.read_csv(args.protein_list,low_memory=False)
protein_list = np.unique(mapping_file['protein_name'])
list_variables_to_keep=['protein_name','mutations','evol_indices']
all_evol_indices = pd.concat([pd.read_csv(args.input_evol_indices_location+os.sep+protein+args.input_evol_indices_filename_suffix+'.csv',low_memory=False)[list_variables_to_keep] \
for protein in protein_list if os.path.exists(args.input_evol_indices_location+os.sep+protein+args.input_evol_indices_filename_suffix+'.csv')], ignore_index=True)
all_evol_indices = all_evol_indices.drop_duplicates()
X_train = np.array(all_evol_indices['evol_indices']).reshape(-1, 1)
if args.verbose:
print("Training data size: "+str(len(X_train)))
print("Number of distinct proteins in protein_list: "+str(len(np.unique(all_evol_indices['protein_name']))))
if args.load_GMM_models:
dict_models = pickle.load( open( args.GMM_parameter_location+os.sep+'GMM_model_dictionary_'+args.GMM_parameter_filename_suffix, "rb" ) )
dict_pathogenic_cluster_index = pickle.load( open( args.GMM_parameter_location+os.sep+'GMM_pathogenic_cluster_index_dictionary_'+args.GMM_parameter_filename_suffix, "rb" ) )
else:
dict_models = {}
dict_pathogenic_cluster_index = {}
if not os.path.exists(args.GMM_parameter_location+os.sep+args.output_eve_scores_filename_suffix):
os.makedirs(args.GMM_parameter_location+os.sep+args.output_eve_scores_filename_suffix)
GMM_stats_log_location=args.GMM_parameter_location+os.sep+args.output_eve_scores_filename_suffix+os.sep+'GMM_stats_'+args.output_eve_scores_filename_suffix+'.csv'
with open(GMM_stats_log_location, "a") as logs:
logs.write("protein_name,weight_pathogenic,mean_pathogenic,mean_benign,std_dev_pathogenic,std_dev_benign\n")
main_GMM = mixture.GaussianMixture(n_components=2, covariance_type='full',max_iter=1000,n_init=30,tol=1e-4)
main_GMM.fit(X_train)
dict_models['main'] = main_GMM
pathogenic_cluster_index = np.argmax(np.array(main_GMM.means_).flatten()) #The pathogenic cluster is the cluster with higher mean value
dict_pathogenic_cluster_index['main'] = pathogenic_cluster_index
if args.verbose:
inferred_params = main_GMM.get_params()
print("Index of mixture component with highest mean: "+str(pathogenic_cluster_index))
print("Model parameters: "+str(inferred_params))
print("Mixture component weights: "+str(main_GMM.weights_))
print("Mixture component means: "+str(main_GMM.means_))
print("Cluster component cov: "+str(main_GMM.covariances_))
with open(GMM_stats_log_location, "a") as logs:
logs.write(",".join(str(x) for x in [
'main', np.array(main_GMM.weights_).flatten()[dict_pathogenic_cluster_index['main']], np.array(main_GMM.means_).flatten()[dict_pathogenic_cluster_index['main']],
np.array(main_GMM.means_).flatten()[1 - dict_pathogenic_cluster_index['main']], np.sqrt(np.array(main_GMM.covariances_).flatten()[dict_pathogenic_cluster_index['main']]),
np.sqrt(np.array(main_GMM.covariances_).flatten()[1 - dict_pathogenic_cluster_index['main']])
])+"\n")
if args.protein_GMM_weight > 0.0:
for protein in tqdm.tqdm(protein_list, "Training all protein GMMs"):
X_train_protein = np.array(all_evol_indices['evol_indices'][all_evol_indices.protein_name==protein]).reshape(-1, 1)
if len(X_train_protein) > 0: #We have evol indices computed for protein on file
protein_GMM = mixture.GaussianMixture(n_components=2,covariance_type='full',max_iter=1000,tol=1e-4,weights_init=main_GMM.weights_,means_init=main_GMM.means_,precisions_init=main_GMM.precisions_)
protein_GMM.fit(X_train_protein)
dict_models[protein] = protein_GMM
dict_pathogenic_cluster_index[protein] = np.argmax(np.array(protein_GMM.means_).flatten())
with open(GMM_stats_log_location, "a") as logs:
logs.write(",".join(str(x) for x in [
protein, np.array(protein_GMM.weights_).flatten()[dict_pathogenic_cluster_index[protein]], np.array(protein_GMM.means_).flatten()[dict_pathogenic_cluster_index[protein]],
np.array(protein_GMM.means_).flatten()[1 - dict_pathogenic_cluster_index[protein]], np.sqrt(np.array(protein_GMM.covariances_).flatten()[dict_pathogenic_cluster_index[protein]]),
np.sqrt(np.array(protein_GMM.covariances_).flatten()[1 - dict_pathogenic_cluster_index[protein]])
])+"\n")
else:
if args.verbose:
print("No evol indices for the protein: "+str(protein)+". Skipping.")
pickle.dump(dict_models, open(args.GMM_parameter_location+os.sep+args.output_eve_scores_filename_suffix+os.sep+'GMM_model_dictionary_'+args.output_eve_scores_filename_suffix, 'wb'))
pickle.dump(dict_pathogenic_cluster_index, open(args.GMM_parameter_location+os.sep+args.output_eve_scores_filename_suffix+os.sep+'GMM_pathogenic_cluster_index_dictionary_'+args.output_eve_scores_filename_suffix, 'wb'))
if args.plot_histograms:
if not os.path.exists(args.plot_location+os.sep+'plots_histograms'+os.sep+args.output_eve_scores_filename_suffix):
os.makedirs(args.plot_location+os.sep+'plots_histograms'+os.sep+args.output_eve_scores_filename_suffix)
plot_helpers.plot_histograms(all_evol_indices, dict_models, dict_pathogenic_cluster_index, args.protein_GMM_weight, args.plot_location+os.sep+'plots_histograms'+os.sep+args.output_eve_scores_filename_suffix, args.output_eve_scores_filename_suffix, protein_list)
if args.compute_EVE_scores:
if args.protein_GMM_weight > 0.0:
all_scores = all_evol_indices.copy()
all_scores['EVE_scores'] = np.nan
all_scores['EVE_classes_100_pct_retained'] = ""
for protein in tqdm.tqdm(protein_list,"Scoring all protein mutations"):
try:
test_data_protein = all_scores[all_scores.protein_name==protein]
X_test_protein = np.array(test_data_protein['evol_indices']).reshape(-1, 1)
mutation_scores_protein = ph.compute_weighted_score_two_GMMs(X_pred=X_test_protein,
main_model = dict_models['main'],
protein_model=dict_models[protein],
cluster_index_main = dict_pathogenic_cluster_index['main'],
cluster_index_protein = dict_pathogenic_cluster_index[protein],
protein_weight = args.protein_GMM_weight)
gmm_class_protein = ph.compute_weighted_class_two_GMMs(X_pred=X_test_protein,
main_model = dict_models['main'],
protein_model=dict_models[protein],
cluster_index_main = dict_pathogenic_cluster_index['main'],
cluster_index_protein = dict_pathogenic_cluster_index[protein],
protein_weight = args.protein_GMM_weight)
gmm_class_label_protein = pd.Series(gmm_class_protein).map(lambda x: 'Pathogenic' if x == 1 else 'Benign')
all_scores.loc[all_scores.protein_name==protein, 'EVE_scores'] = np.array(mutation_scores_protein)
all_scores.loc[all_scores.protein_name==protein, 'EVE_classes_100_pct_retained'] = np.array(gmm_class_label_protein)
except:
print("Issues with protein: "+str(protein)+". Skipping.")
else:
all_scores = all_evol_indices.copy()
mutation_scores = dict_models['main'].predict_proba(np.array(all_scores['evol_indices']).reshape(-1, 1))
all_scores['EVE_scores'] = mutation_scores[:,dict_pathogenic_cluster_index['main']]
gmm_class = dict_models['main'].predict(np.array(all_scores['evol_indices']).reshape(-1, 1))
all_scores['EVE_classes_100_pct_retained'] = np.array(pd.Series(gmm_class).map(lambda x: 'Pathogenic' if x == dict_pathogenic_cluster_index['main'] else 'Benign'))
len_before_drop_na = len(all_scores)
all_scores = all_scores.dropna(subset=['EVE_scores'])
len_after_drop_na = len(all_scores)
if args.verbose:
scores_stats = ph.compute_stats(all_scores['EVE_scores'])
print("Score stats: "+str(scores_stats))
print("Dropped mutations due to missing EVE scores: "+str(len_after_drop_na-len_before_drop_na))
all_scores['uncertainty'] = ph.predictive_entropy_binary_classifier(all_scores['EVE_scores'])
if args.recompute_uncertainty_threshold:
uncertainty_cutoffs_deciles, _, _ = ph.compute_uncertainty_deciles(all_scores)
uncertainty_cutoffs_quartiles, _, _ = ph.compute_uncertainty_quartiles(all_scores)
if args.verbose:
print("Uncertainty cutoffs deciles: "+str(uncertainty_cutoffs_deciles))
print("Uncertainty cutoffs quartiles: "+str(uncertainty_cutoffs_quartiles))
else:
uncertainty_thresholds = json.load(open(args.default_uncertainty_threshold_file_location))
uncertainty_cutoffs_deciles = uncertainty_thresholds["deciles"]
uncertainty_cutoffs_quartiles = uncertainty_thresholds["quartiles"]
for decile in range(1,10):
classification_name = 'EVE_classes_'+str((decile)*10)+"_pct_retained"
all_scores[classification_name] = all_scores['EVE_classes_100_pct_retained']
all_scores.loc[all_scores['uncertainty'] > uncertainty_cutoffs_deciles[str(decile)], classification_name] = 'Uncertain'
if args.verbose:
print("Stats classification by uncertainty for decile #:"+str(decile))
print(all_scores[classification_name].value_counts(normalize=True))
if args.verbose:
print("Stats classification by uncertainty for decile #:"+str(10))
print(all_scores['EVE_classes_100_pct_retained'].value_counts(normalize=True))
for quartile in [1,3]:
classification_name = 'EVE_classes_'+str((quartile)*25)+"_pct_retained"
all_scores[classification_name] = all_scores['EVE_classes_100_pct_retained']
all_scores.loc[all_scores['uncertainty'] > uncertainty_cutoffs_quartiles[str(quartile)], classification_name] = 'Uncertain'
if args.verbose:
print("Stats classification by uncertainty for quartile #:"+str(quartile))
print(all_scores[classification_name].value_counts(normalize=True))
all_scores.to_csv(args.output_eve_scores_location+os.sep+'all_EVE_scores_'+args.output_eve_scores_filename_suffix+'.csv', index=False)
if args.plot_scores_vs_labels:
labels_dataset=pd.read_csv(args.labels_file_location,low_memory=False)
all_scores_mutations_with_labels = pd.merge(all_scores, labels_dataset[['protein_name','mutations','ClinVar_labels']], how='inner', on=['protein_name','mutations'])
all_PB_scores = all_scores_mutations_with_labels[all_scores_mutations_with_labels.ClinVar_labels!=0.5].copy()
if not os.path.exists(args.plot_location+os.sep+'plots_scores_vs_labels'+os.sep+args.output_eve_scores_filename_suffix):
os.makedirs(args.plot_location+os.sep+'plots_scores_vs_labels'+os.sep+args.output_eve_scores_filename_suffix)
for protein in tqdm.tqdm(protein_list,"Plot scores Vs labels"):
plot_helpers.plot_scores_vs_labels(score_df=all_PB_scores[all_PB_scores.protein_name==protein],
plot_location=args.plot_location+os.sep+'plots_scores_vs_labels'+os.sep+args.output_eve_scores_filename_suffix,
output_eve_scores_filename_suffix=args.output_eve_scores_filename_suffix+'_'+protein,
mutation_name='mutations', score_name="EVE_scores", label_name='ClinVar_labels')