-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathrun.py
115 lines (104 loc) · 4.03 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import argparse
import torch.nn as nn
from nn import ResNet18
from tools import AverageMeter
from progressbar import ProgressBar
from tools import seed_everything
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.optim as optim
from trainingmonitor import TrainingMonitor
from optimizer import Lookahead
epochs = 30
batch_size = 128
seed = 42
seed_everything(seed)
model = ResNet18()
loss_fn = nn.CrossEntropyLoss()
device = torch.device("cuda:0")
model.to(device)
parser = argparse.ArgumentParser(description='CIFAR10')
parser.add_argument("--model", type=str, default='ResNet18')
parser.add_argument("--task", type=str, default='image')
parser.add_argument("--optimizer", default='lookahead',type=str,choices=['lookahead','adam'])
args = parser.parse_args()
if args.optimizer == 'lookahead':
arch = 'ResNet18_Lookahead_adam'
optimizer = optim.Adam(model.parameters(), lr=0.001)
optimizer = Lookahead(optimizer=optimizer,k=5,alpha=0.5)
else:
arch = 'ResNet18_Adam'
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_monitor = TrainingMonitor(file_dir='./',arch = arch)
def train(train_loader):
pbar = ProgressBar(n_total=len(train_loader),desc='Training')
train_loss = AverageMeter()
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
pbar(step = batch_idx,info = {'loss':loss.item()})
train_loss.update(loss.item(),n =1)
return {'loss':train_loss.avg}
def test(test_loader):
pbar = ProgressBar(n_total=len(test_loader),desc='Testing')
valid_loss = AverageMeter()
valid_acc = AverageMeter()
model.eval()
count = 0
with torch.no_grad():
for batch_idx,(data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = loss_fn(output, target).item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
valid_loss.update(loss,n = data.size(0))
valid_acc.update(correct, n=1)
count += data.size(0)
pbar(step=batch_idx)
return {'valid_loss':valid_loss.avg,
'valid_acc':valid_acc.sum /count}
data = {
'train': datasets.CIFAR10(
root='./data', download=True,
transform=transforms.Compose([
transforms.RandomCrop((32, 32), padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010))]
)
),
'valid': datasets.CIFAR10(
root='./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914,0.4822,0.4465),(0.2023,0.1994,0.2010))]
)
)
}
loaders = {
'train': DataLoader(data['train'], batch_size=128, shuffle=True,
num_workers=10, pin_memory=True,
drop_last=True),
'valid': DataLoader(data['valid'], batch_size=128,
num_workers=10, pin_memory=True,
drop_last=False)
}
for epoch in range(1, epochs + 1):
train_log = train(loaders['train'])
if args.optimizer == 'lookahead':
optimizer._backup_and_load_cache()
valid_log = test(loaders['valid'])
optimizer._clear_and_load_backup()
else:
valid_log = test(loaders['valid'])
logs = dict(train_log, **valid_log)
show_info = f'\nEpoch: {epoch} - ' + "-".join([f' {key}: {value:.4f} ' for key, value in logs.items()])
print(show_info)
train_monitor.epoch_step(logs)