-
Notifications
You must be signed in to change notification settings - Fork 3
/
learner.py
387 lines (322 loc) · 18 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
Base Learner, without Meta-Learning.
Can be used to train for good average performance, or for the oracle environment.
"""
import os
import time
import gym
import numpy as np
import torch
from algorithms.online_storage import OnlineStorage
from algorithms.ppo import PPO
from environments.parallel_envs import make_vec_envs
from exploration.exploration_bonus import ExplorationBonus
from models.policy import Policy
from utils import evaluation as utl_eval
from utils import helpers as utl
from utils.tb_logger import TBLogger
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Learner:
"""
Learner (no meta-learning), can be used to train avg/oracle/belief-oracle policies.
"""
def __init__(self, args):
self.args = args
utl.set_seed(self.args.seed, self.args.deterministic_execution)
# calculate number of updates and keep count of frames/iterations
self.num_updates = int(args.num_frames) // args.policy_num_steps // args.num_processes
self.frames = 0
self.iter_idx = -1
# initialise tensorboard logger
self.logger = TBLogger(self.args, self.args.exp_label)
# initialise environments
self.envs = make_vec_envs(seed=args.seed, num_processes=args.num_processes,
gamma=args.policy_gamma, device=device,
episodes_per_task=self.args.max_rollouts_per_task,
normalise_rew=args.norm_rew_for_policy, ret_rms=None,
args=args
)
# calculate what the maximum length of the trajectories is
args.max_trajectory_len = self.envs._max_episode_steps
args.max_trajectory_len *= self.args.max_rollouts_per_task
# get policy input dimensions
self.args.state_dim = self.envs.observation_space.shape[0]
self.args.task_dim = self.envs.task_dim
self.args.belief_dim = self.envs.belief_dim
self.args.num_states = self.envs.num_states
# get policy output (action) dimensions
self.args.action_space = self.envs.action_space
if isinstance(self.envs.action_space, gym.spaces.discrete.Discrete):
self.args.action_dim = 1
else:
self.args.action_dim = self.envs.action_space.shape[0]
# initialise rew bonus
if self.args.add_exploration_bonus:
self.intrinsic_reward = ExplorationBonus(
args=self.args,
logger=self.logger,
dim_state=self.args.state_dim,
)
else:
self.intrinsic_reward = None
# initialise policy
self.policy_storage = self.initialise_policy_storage()
self.policy = self.initialise_policy()
def initialise_policy_storage(self):
return OnlineStorage(
args=self.args,
num_steps=self.args.policy_num_steps,
num_processes=self.args.num_processes,
state_dim=self.args.state_dim,
latent_dim=0, # use metalearner.py if you want to use the VAE
belief_dim=self.args.belief_dim,
task_dim=self.args.task_dim,
action_space=self.args.action_space,
hidden_size=0,
normalise_rewards=self.args.norm_rew_for_policy,
add_exploration_bonus=self.args.add_exploration_bonus,
intrinsic_reward=self.intrinsic_reward,
)
def initialise_policy(self):
policy_net = Policy(
args=self.args,
pass_state_to_policy=self.args.pass_state_to_policy,
pass_latent_to_policy=False, # use metalearner.py if you want to use the VAE
pass_belief_to_policy=self.args.pass_belief_to_policy,
pass_task_to_policy=self.args.pass_task_to_policy,
dim_state=self.args.state_dim,
dim_latent=0,
dim_belief=self.args.belief_dim,
dim_task=self.args.task_dim,
hidden_layers=self.args.policy_layers,
action_space=self.envs.action_space,
).to(device)
policy = PPO(
args=self.args,
actor_critic=policy_net,
entropy_coef=self.args.policy_entropy_coef,
lr=self.args.lr_policy,
policy_anneal_lr=self.args.policy_anneal_lr,
train_steps=self.num_updates,
num_epochs=self.args.ppo_num_epochs,
num_mini_batches=self.args.ppo_num_minibatch,
clip_param=self.args.ppo_clip_param,
)
return policy
def train(self):
""" Main training loop """
start_time = time.time()
# reset environments
prev_state, belief, task = utl.reset_env(self.envs, self.args)
# insert initial observation / embeddings to rollout storage
self.policy_storage.prev_state[0].copy_(prev_state)
if belief is not None:
self.policy_storage.beliefs[0].copy_(belief)
if task is not None:
self.policy_storage.tasks[0].copy_(task)
# log once before training
with torch.no_grad():
self.log(None, None, start_time)
intrinsic_reward_is_pretrained = False
for self.iter_idx in range(self.num_updates):
# rollouts policies for a few steps
for step in range(self.args.policy_num_steps):
# sample actions from policy
with torch.no_grad():
value, action = utl.select_action(
args=self.args,
policy=self.policy,
state=prev_state,
belief=belief,
task=task,
deterministic=False)
# observe reward and next obs
[prev_state, belief, task], (rew_raw, rew_normalised), done, infos = utl.env_step(self.envs, action,
self.args)
# create mask for episode ends
masks_done = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done]).to(device)
# bad_mask is true if episode ended because time limit was reached
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]).to(device)
# add new observations to intrinsic reward
if self.args.add_exploration_bonus:
self.intrinsic_reward.add(prev_state, belief, action)
# add the obs before reset to the policy storage
# (used for computing intrinsic rewards)
self.policy_storage.next_state[step] = prev_state.clone()
# reset environments that are done
done_indices = np.argwhere(done.flatten()).flatten()
if len(done_indices) > 0:
prev_state, belief, task = utl.reset_env(self.envs, self.args, indices=done_indices,
state=prev_state)
# add experience to policy buffer
self.policy_storage.insert(
state=prev_state,
belief=belief,
task=task,
actions=action,
rewards_raw=rew_raw,
rewards_normalised=rew_normalised,
value_preds=value,
masks=masks_done,
bad_masks=bad_masks,
done=torch.from_numpy(np.array(done, dtype=float)).unsqueeze(1),
)
self.frames += self.args.num_processes
# --- UPDATE ---
# pretrain RND model once to bring it on right scale
if self.args.add_exploration_bonus and not intrinsic_reward_is_pretrained:
# compute returns once - this will normalise the RND inputs!
next_value = self.get_value(state=prev_state, belief=belief, task=task)
self.policy_storage.compute_returns(next_value, self.args.policy_gamma,
self.args.policy_tau,
use_proper_time_limits=self.args.use_proper_time_limits,
vae=None)
# update intrinsic rewards
self.intrinsic_reward.update(self.args.num_frames, self.iter_idx,
log=False) # (calling with max number of frames to initialise all networks)
intrinsic_reward_is_pretrained = True
else:
train_stats = self.update(state=prev_state, belief=belief, task=task)
# log
run_stats = [action, self.policy_storage.action_log_probs, value]
if train_stats is not None:
with torch.no_grad():
self.log(run_stats, train_stats, start_time)
# update intrinsic reward model
if self.args.add_exploration_bonus:
if self.iter_idx % self.args.rnd_update_frequency == 0:
self.intrinsic_reward.update(self.frames, self.iter_idx)
# clean up after update
self.policy_storage.after_update()
self.envs.close()
def get_value(self, state, belief, task):
return self.policy.actor_critic.get_value(state=state, belief=belief, task=task, latent=None).detach()
def update(self, state, belief, task):
"""
Meta-update.
Here the policy is updated for good average performance across tasks.
:return: policy_train_stats which are: value_loss_epoch, action_loss_epoch, dist_entropy_epoch, loss_epoch
"""
# bootstrap next value prediction
with torch.no_grad():
next_value = self.get_value(state=state, belief=belief, task=task)
# compute returns for current rollouts
self.policy_storage.compute_returns(next_value, self.args.policy_gamma,
self.args.policy_tau,
use_proper_time_limits=self.args.use_proper_time_limits,
vae=None)
policy_train_stats = self.policy.update(policy_storage=self.policy_storage)
return policy_train_stats
def log(self, run_stats, train_stats, start):
"""
Evaluate policy, save model, write to tensorboard logger.
"""
# --- visualise behaviour of policy ---
if (self.iter_idx + 1) % self.args.vis_interval == 0:
ret_rms = self.envs.venv.ret_rms if self.args.norm_rew_for_policy else None
utl_eval.visualise_behaviour(args=self.args,
policy=self.policy,
image_folder=self.logger.full_output_folder,
iter_idx=self.iter_idx,
ret_rms=ret_rms,
intrinsic_reward=self.intrinsic_reward,
)
# --- evaluate policy ----
if (self.iter_idx + 1) % self.args.eval_interval == 0:
ret_rms = self.envs.venv.ret_rms if self.args.norm_rew_for_policy else None
returns_per_episode = utl_eval.evaluate(args=self.args,
policy=self.policy,
ret_rms=ret_rms,
intrinsic_reward=self.intrinsic_reward,
iter_idx=self.iter_idx,
num_episodes=None,
)
(returns_per_episode, sparse_returns_per_episode, dense_returns_per_episode,
returns_bonus_per_episode,
returns_bonus_state_per_episode, returns_bonus_belief_per_episode,
returns_bonus_hyperstate_per_episode,
returns_bonus_vae_loss_per_episode,
success_per_episode) = returns_per_episode
# get the average across tasks (=processes)
returns_avg = returns_per_episode.mean(dim=0)
if success_per_episode is not None:
successes_avg = success_per_episode.mean(dim=0)
sparse_returns_avg = sparse_returns_per_episode.mean(dim=0)
dense_returns_avg = dense_returns_per_episode.mean(dim=0)
returns_bonus_avg = returns_bonus_per_episode.mean(dim=0)
returns_bonus_state_avg = returns_bonus_state_per_episode.mean(dim=0)
returns_bonus_belief_avg = returns_bonus_belief_per_episode.mean(dim=0)
returns_bonus_hyperstate_avg = returns_bonus_hyperstate_per_episode.mean(dim=0)
for k in range(len(returns_avg)):
# avg
self.logger.add(f'return_avg_per_iter/episode_{k + 1}', returns_avg[k], self.iter_idx)
self.logger.add(f'return_avg_per_frame/episode_{k + 1}', returns_avg[k], self.frames)
if success_per_episode is not None:
self.logger.add(f'success_avg_per_iter/episode_{k + 1}', successes_avg[k], self.iter_idx)
self.logger.add(f'success_avg_per_frame/episode_{k + 1}', successes_avg[k], self.frames)
# sparse
self.logger.add(f'sparse_return_avg_per_iter/episode_{k + 1}', sparse_returns_avg[k],
self.iter_idx)
self.logger.add(f'sparse_return_avg_per_frame/episode_{k + 1}', sparse_returns_avg[k],
self.frames)
# dense
self.logger.add(f'dense_return_avg_per_iter/episode_{k + 1}', dense_returns_avg[k],
self.iter_idx)
self.logger.add(f'dense_return_avg_per_frame/episode_{k + 1}', dense_returns_avg[k],
self.frames)
# avg bonus
self.logger.add(f'return_bonus_avg_per_iter/episode_{k + 1}',
returns_bonus_avg[k], self.iter_idx)
self.logger.add(f'return_bonus_avg_per_frame/episode_{k + 1}',
returns_bonus_avg[k], self.frames)
# individual bonuses: states
if self.args.exploration_bonus_state:
self.logger.add(f'return_bonus_state_avg_per_iter/episode_{k + 1}',
returns_bonus_state_avg[k], self.iter_idx)
self.logger.add(f'return_bonus_state_avg_per_frame/episode_{k + 1}',
returns_bonus_state_avg[k], self.frames)
# individual bonuses: belief
if self.args.exploration_bonus_belief:
self.logger.add(f'return_bonus_belief_avg_per_iter/episode_{k + 1}',
returns_bonus_belief_avg[k], self.iter_idx)
self.logger.add(f'return_bonus_belief_avg_per_frame/episode_{k + 1}',
returns_bonus_belief_avg[k], self.frames)
# individual bonuses: hyperstates
if self.args.exploration_bonus_hyperstate:
self.logger.add(f'return_bonus_hyperstate_avg_per_iter/episode_{k + 1}',
returns_bonus_hyperstate_avg[k], self.iter_idx)
self.logger.add(f'return_bonus_hyperstate_avg_per_frame/episode_{k + 1}',
returns_bonus_hyperstate_avg[k], self.frames)
print("Updates {}, num timesteps {}, FPS {} \n Mean return (train): {:.5f} \n".
format(self.iter_idx, self.frames, int(self.frames / (time.time() - start)),
returns_avg[-1].item()))
# save model
if (self.iter_idx + 1) % self.args.save_interval == 0:
save_path = os.path.join(self.logger.full_output_folder, 'models')
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(self.policy.actor_critic, os.path.join(save_path, f"policy.pt"))
# save normalisation params of envs
if self.args.norm_rew_for_policy:
rew_rms = self.envs.venv.ret_rms
utl.save_obj(rew_rms, save_path, f"env_rew_rms")
# --- log some other things ---
if ((self.iter_idx + 1) % self.args.log_interval == 0) and (train_stats is not None):
self.logger.add('policy_losses/value_loss', train_stats[0], self.iter_idx)
self.logger.add('policy_losses/action_loss', train_stats[1], self.iter_idx)
self.logger.add('policy_losses/dist_entropy', train_stats[2], self.iter_idx)
self.logger.add('policy_losses/sum', train_stats[3], self.iter_idx)
# writer.add_scalar('policy/action', action.mean(), j)
self.logger.add('policy/action', run_stats[0][0].float().mean(), self.iter_idx)
if hasattr(self.policy.actor_critic, 'logstd'):
self.logger.add('policy/action_logstd', self.policy.actor_critic.dist.logstd.mean(), self.iter_idx)
self.logger.add('policy/action_logprob', run_stats[1].mean(), self.iter_idx)
self.logger.add('policy/value', run_stats[2].mean(), self.iter_idx)
param_list = list(self.policy.actor_critic.parameters())
param_mean = np.mean([param_list[i].data.cpu().numpy().mean() for i in range(len(param_list))])
param_grad_mean = np.mean([param_list[i].grad.cpu().numpy().mean() for i in range(len(param_list))])
self.logger.add('weights/policy', param_mean, self.iter_idx)
self.logger.add('weights/policy_std', param_list[0].data.cpu().mean(), self.iter_idx)
self.logger.add('gradients/policy', param_grad_mean, self.iter_idx)
self.logger.add('gradients/policy_std', param_list[0].grad.cpu().numpy().mean(), self.iter_idx)