-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcapsnet.py
228 lines (186 loc) · 10.7 KB
/
capsnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
from tensorflow.keras import layers, models, optimizers
from tensorflow.keras.layers import concatenate, Permute, Lambda
from tensorflow.keras import backend as K
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import regularizers
from PIL import Image
import random
import scipy
from capslayer import *
import os
import argparse
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import callbacks
from tensorflow.keras.utils import multi_gpu_model
K.set_image_data_format('channels_last')
def Lane(laneID, n_class, lanesize, lanetype, lane_input, routings, stacked = 1):
primarycaps = []
output = layers.Conv2D(filters=lanesize*16, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1'+str(laneID)+'d0')(lane_input)
primarycaps = primarycaps + [PrimaryCap(output, dim_capsule=16, n_channels=lanesize*2, kernel_size=6, strides=2, padding='valid', i = laneID)]
for i in range(1, stacked):
reshaped = Lambda(lambda ls : K.expand_dims(ls, axis=-1))(primarycaps[-1])
output = layers.Conv2D(filters=lanesize*16, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1'+str(laneID)+'d'+str(i))(reshaped)
primarycaps = primarycaps + [PrimaryCap(output, dim_capsule=16, n_channels=lanesize*2, kernel_size=6, strides=3, padding='valid', i = laneID + 1000*i)]
if stacked == 1:
allprimarycaps = primarycaps[0]
else:
allprimarycaps = Lambda(lambda ls : concatenate(ls, axis=1))(primarycaps)
digitcaps = CapsuleLayer(num_capsule=1, dim_capsule=n_class, routings=routings, name='digitcaps'+str(laneID))(allprimarycaps)
return digitcaps
def LaneCapsNet(input_shape, n_class, routings, num_lanes = 4, lanesize = 1, lanedepth = 1, lanetype = 1, gpus = 1):
x = layers.Input(shape=input_shape, batch_size=args.batch_size)
lanes = []
for i in range(0, num_lanes):
if (gpus != 0):
with tf.device("/gpu:%d" % (i % gpus)):
lanes = lanes + [Lane(i, n_class, lanesize, lanetype, x, routings, stacked = lanedepth)]
else:
lanes = lanes + [Lane(i, n_class, lanesize, lanetype, x, routings, stacked = lanedepth)]
digitcaps1 = Lambda(lambda ls : K.permute_dimensions(concatenate(ls, axis=1), [0,2,1]))(lanes)
digitcaps = layers.Dropout(args.dropout, (1, digitcaps1.get_shape()[2]))(digitcaps1)
out_caps = Length(name='capsnet')(digitcaps)
# Decoder network.
y = layers.Input(shape=(n_class,))
masked_by_y = Mask()([digitcaps1, y]) # The true label is used to mask the output of capsule layer. For training
masked = Mask()(digitcaps1) # Mask using the capsule with maximal length. For prediction
# Shared Decoder model in training and prediction
decoder = models.Sequential(name='decoder')
decoder.add(layers.Dense(512, activation='relu', input_dim=num_lanes*n_class))
decoder.add(layers.Dense(1024, activation='relu'))
decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))
decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))
# Models for training and evaluation (prediction)
train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])
eval_model = models.Model(x, [out_caps, decoder(masked)])
# manipulate model
noise = layers.Input(shape=(n_class, num_lanes))
noised_digitcaps = layers.Add()([digitcaps1, noise])
masked_noised_y = Mask()([noised_digitcaps, y])
manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y))
return train_model, eval_model, manipulate_model
def margin_loss(y_true, y_pred):
L = y_true * tf.square(tf.maximum(0., 0.9 - y_pred)) + \
0.5 * (1 - y_true) * tf.square(tf.maximum(0., y_pred - 0.1))
return tf.reduce_mean(tf.reduce_sum(L, 1))
def train(model, data, args):
# unpacking the data
(x_train, y_train), (x_test, y_test) = data
# callbacks
log = callbacks.CSVLogger(args.save_dir + '/log.csv')
checkpoint = callbacks.ModelCheckpoint(args.save_dir + 'weights-{epoch:02d}.h5', monitor='val_capsnet_acc',
save_best_only=True, save_weights_only=True, verbose=1)
lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (args.lr_decay ** epoch))
model.compile(optimizer=optimizers.Adam(lr=args.lr),
loss=[margin_loss, 'mse'],
loss_weights=[1., args.lam_recon],
metrics={'capsnet': 'accuracy'})
# Training without data augmentation:
model.fit((x_train, y_train), (y_train, x_train), batch_size=args.batch_size, epochs=args.epochs,
validation_data=((x_test, y_test), (y_test, x_test)), callbacks=[log, checkpoint, lr_decay])
model.save_weights(args.save_dir + '/trained_model.h5')
print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)
return model
def test(model, data, args):
x_test, y_test = data
y_pred, x_recon = model.predict(x_test, batch_size=100)
print('-'*30 + 'Begin: test' + '-'*30)
print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])
img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))
image = img * 255
Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")
print()
print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)
print('-' * 30 + 'End: test' + '-' * 30)
plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))
plt.show()
def manipulate_latent(model, data, args):
print('-'*30 + 'Begin: manipulate' + '-'*30)
x_test, y_test = data
index = np.argmax(y_test, 1) == args.digit
number = np.random.randint(low=0, high=sum(index) - 1)
x, y = x_test[index][number], y_test[index][number]
x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)
noise = np.zeros([1, 10, 16])
x_recons = []
for dim in range(16):
for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25]:
tmp = np.copy(noise)
tmp[:,:,dim] = r
x_recon = model.predict([x, y, tmp])
x_recons.append(x_recon)
x_recons = np.concatenate(x_recons)
img = combine_images(x_recons, height=16)
image = img*255
Image.fromarray(image.astype(np.uint8)).save(args.save_dir + '/manipulate-%d.png' % args.digit)
print('manipulated result saved to %s/manipulate-%d.png' % (args.save_dir, args.digit))
print('-' * 30 + 'End: manipulate' + '-' * 30)
def load_cifar():
# the data, shuffled and split between train and test sets
#from keras.datasets import fashion_mnist
#(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
x_train = x_train.reshape(-1, 32, 32, 3).astype('float32') / 255.
x_test = x_test.reshape(-1, 32, 32, 3).astype('float32') / 255.
y_train = to_categorical(y_train.astype('float32'))
y_test = to_categorical(y_test.astype('float32'))
return (x_train, y_train), (x_test, y_test)
def load_mnist():
# the data, shuffled and split between train and test sets
from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.
x_test = x_test.reshape(-1, 28, 28, 1).astype('float32') / 255.
y_train = to_categorical(y_train.astype('float32'))
y_test = to_categorical(y_test.astype('float32'))
return (x_train, y_train), (x_test, y_test)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Multi-lane Capsule Network")
parser.add_argument('--epochs', default=2, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--lr', default=0.001, type=float,
help="Initial learning rate")
parser.add_argument('--lr_decay', default=0.9, type=float,
help="The value multiplied by lr at each epoch. Set a larger value for larger epochs")
parser.add_argument('--lam_recon', default=0.392, type=float,
help="The coefficient for the loss of decoder")
parser.add_argument('-r', '--routings', default=3, type=int,
help="Number of iterations used in routing algorithm. should > 0")
parser.add_argument('--shift_fraction', default=0.1, type=float,
help="Fraction of pixels to shift at most in each direction.")
parser.add_argument('--debug', action='store_true',
help="Save weights by TensorBoard")
parser.add_argument('--save_dir', default='./result')
parser.add_argument('-t', '--testing', action='store_true',
help="Test the trained model on testing dataset")
parser.add_argument('--digit', default=5, type=int,
help="Digit to manipulate")
parser.add_argument('--dropout', default=0, type=float,
help="Percentage of lanes to be dropout per batch")
parser.add_argument('--num_lanes', default=16, type=int,
help="Number of lanes")
parser.add_argument('--lane_size', default=8, type=int,
help="Lane size")
parser.add_argument('--lane_depth', default=1, type=int,
help="Lane depth")
parser.add_argument('--gpus', default=0, type=int,
help="number of gpus to be used")
parser.add_argument('--lane_type', default=1, type=int,
help="Type of the lane")
parser.add_argument('-w', '--weights', default=None, help="The path of the saved weights. Should be specified when testing")
parser.add_argument('--dataset', default='mnist')
args = parser.parse_args()
regularizers.l1_l2(l1=0.008, l2=0.008)
(x_train, y_train), (x_test, y_test) = load_mnist() if args.dataset == "mnist" else load_cifar()
model, eval_model, manipulate_model = LaneCapsNet(input_shape=x_train.shape[1:],
n_class=len(np.unique(np.argmax(y_train, 1))),
routings=args.routings,
num_lanes = args.num_lanes,
lanesize = args.lane_size,
lanedepth = args.lane_depth,
lanetype = args.lane_type,
gpus = args.gpus)
model.summary()
# gpu_model = multi_gpu_model(model, gpus=args.gpus)
train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args)