diff --git a/llvm/test/Analysis/Delinearization/validation_large_size.ll b/llvm/test/Analysis/Delinearization/validation_large_size.ll new file mode 100644 index 0000000000000..a475f449b9e39 --- /dev/null +++ b/llvm/test/Analysis/Delinearization/validation_large_size.ll @@ -0,0 +1,140 @@ +; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 6 +; RUN: opt < %s -passes='print' --delinearize-use-fixed-size-array-heuristic -disable-output 2>&1 | FileCheck %s + +; FIXME: As for array accesses, the following property should hold (without +; out-of-bound accesses): +; +; &A[I_1][I_2]...[I_n] == &A[J_1][J_2]...[J_n] iff +; (I_1, I_2, ..., I_n) == (J_1, J_2, ..., J_n) +; +; Currently, delinearization doesn't guarantee this property, especially when +; the inferred array size is very large so that the product of dimensions may +; overflow. The delinearization validation should consider such cases as +; invalid. + +; for (i = 0; i < (1ULL << 60); i++) +; for (j = 0; j < 256; j++) +; A[i*256 + j] = 0; +; +; The store will be delinearized to `A[i][j]` with its size `[][256]`. Since +; `i` can be very large, the mapping from subscripts to addresses is not +; injective. E.g., `&A[0][j] = &A[2^56][j] = ...`. +; +define void @large_size_fixed(ptr %A) { +; CHECK-LABEL: 'large_size_fixed' +; CHECK-NEXT: Inst: store i8 0, ptr %gep, align 1 +; CHECK-NEXT: AccessFunction: {{\{\{}}0,+,256}<%for.i.header>,+,1}<%for.j> +; CHECK-NEXT: Base offset: %A +; CHECK-NEXT: ArrayDecl[UnknownSize][256] with elements of 1 bytes. +; CHECK-NEXT: ArrayRef[{0,+,1}<%for.i.header>][{0,+,1}<%for.j>] +; CHECK-NEXT: Delinearization validation: Succeeded +; +entry: + br label %for.i.header + +for.i.header: + %i = phi i64 [ 0, %entry ], [ %i.inc, %for.i.latch ] + %i.mul = mul i64 %i, 256 + br label %for.j + +for.j: + %j = phi i64 [ 0, %for.i.header ], [ %j.inc, %for.j ] + %offset = add nsw i64 %i.mul, %j + %gep = getelementptr i8, ptr %A, i64 %offset + store i8 0, ptr %gep + %j.inc = add i64 %j, 1 + %ec.j = icmp eq i64 %j.inc, 256 + br i1 %ec.j, label %for.i.latch, label %for.j + +for.i.latch: + %i.inc = add i64 %i, 1 + %ec.i = icmp eq i64 %i.inc, 1152921504606846976 + br i1 %ec.i, label %exit, label %for.i.header + +exit: + ret void +} + +; for (i = 0; i < n; i++) +; for (j = 0; j < m; j++) +; for (k = 0; k < o; k++) +; if (i < 5 && j < 5 && k < 5) +; A[i*m*o + j*o + k] = 0; +; +; The product (%m * %o) can overflow, e.g., (%m, %o) = (2^32 - 1, 2^32). In +; this case, the delinearization `A[%i][%j][%k]` with its size `[][%m][%o]` +; should be considered invalid, because the address calculation will be: +; +; A[%i][%j][%k] = %A + %i*%m*%o + %j*%o + %k +; = %A - 2^32*%i + %j*2^32 + %k +; = %A + 2^32*(%j - %i) + %k +; +; It means `&A[0][0][%k]` = `&A[1][1][%k]` = ..., which implies that the +; mapping from subscripts to addresses is not injective. +; +define void @large_size_parametric(i64 %n, i64 %m, i64 %o, ptr %A) { +; CHECK-LABEL: 'large_size_parametric' +; CHECK-NEXT: Inst: store i8 0, ptr %gep, align 1 +; CHECK-NEXT: AccessFunction: {{\{\{\{}}0,+,(%m * %o)}<%for.i.header>,+,%o}<%for.j.header>,+,1}<%for.k.header> +; CHECK-NEXT: Base offset: %A +; CHECK-NEXT: ArrayDecl[UnknownSize][%m][%o] with elements of 1 bytes. +; CHECK-NEXT: ArrayRef[{0,+,1}<%for.i.header>][{0,+,1}<%for.j.header>][{0,+,1}<%for.k.header>] +; CHECK-NEXT: Delinearization validation: Succeeded +; +entry: + %guard.i = icmp sgt i64 %n, 0 + %m_o = mul i64 %m, %o + br i1 %guard.i, label %for.i.header, label %exit + +for.i.header: + %i = phi i64 [ 0, %entry ], [ %i.inc, %for.i.latch ] + %i_m_o = mul i64 %i, %m_o + br label %for.j.preheader + +for.j.preheader: + %guard.j = icmp sgt i64 %m, 0 + br i1 %guard.j, label %for.j.header, label %for.i.latch + +for.j.header: + %j = phi i64 [ 0, %for.j.preheader ], [ %j.inc, %for.j.latch ] + %j_o = mul i64 %j, %o + br label %for.k.preheader + +for.k.preheader: + %guard.k = icmp sgt i64 %o, 0 + br i1 %guard.k, label %for.k.header, label %for.j.latch + +for.k.header: + %k = phi i64 [ 0, %for.k.preheader ], [ %k.inc, %for.k.latch ] + %cond.i = icmp slt i64 %i, 5 + %cond.j = icmp slt i64 %j, 5 + %cond.k = icmp slt i64 %k, 5 + %cond.ij = and i1 %cond.i, %cond.j + %cond = and i1 %cond.ij, %cond.k + br i1 %cond, label %if.then, label %for.k.latch + +if.then: + %offset.tmp = add i64 %i_m_o, %j_o + %offset = add i64 %offset.tmp, %k + %gep = getelementptr i8, ptr %A, i64 %offset + store i8 0, ptr %gep, align 1 + br label %for.k.latch + +for.k.latch: + %k.inc = add nsw i64 %k, 1 + %ec.k = icmp eq i64 %k.inc, %o + br i1 %ec.k, label %for.j.latch, label %for.k.header + +for.j.latch: + %j.inc = add nsw i64 %j, 1 + %ec.j = icmp eq i64 %j.inc, %m + br i1 %ec.j, label %for.i.latch, label %for.j.header + +for.i.latch: + %i.inc = add nsw i64 %i, 1 + %ec.i = icmp eq i64 %i.inc, %n + br i1 %ec.i, label %exit, label %for.i.header + +exit: + ret void +}