-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathhelper.py
214 lines (189 loc) · 5.85 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import cv2
from scipy import ndimage
import numpy as np
def get_normal_map(img):
img = img.astype(np.float)
img = img / 255.0
img = - img + 1
img[img < 0] = 0
img[img > 1] = 1
return img
def get_gray_map(img):
gray = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)
highPass = gray.astype(np.float)
highPass = highPass / 255.0
highPass = 1 - highPass
highPass = highPass[None]
return highPass.transpose((1,2,0))
def get_light_map(img):
gray = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (0, 0), 3)
highPass = gray.astype(int) - blur.astype(int)
highPass = highPass.astype(np.float)
highPass = highPass / 128.0
highPass = highPass[None]
return highPass.transpose((1,2,0))
def get_light_map_single(img):
gray = img
gray = gray[None]
gray = gray.transpose((1,2,0))
blur = cv2.GaussianBlur(gray, (0, 0), 3)
gray = gray.reshape((gray.shape[0],gray.shape[1]))
highPass = gray.astype(int) - blur.astype(int)
highPass = highPass.astype(np.float)
highPass = highPass / 128.0
return highPass
def get_light_map_drawer(img):
gray = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (0, 0), 3)
highPass = gray.astype(int) - blur.astype(int) + 255
highPass[highPass < 0 ] = 0
highPass[highPass > 255] = 255
highPass = highPass.astype(np.float)
highPass = highPass / 255.0
highPass = 1 - highPass
highPass = highPass[None]
return highPass.transpose((1,2,0))
def get_light_map_drawer2(img):
ret = img.copy()
ret=ret.astype(np.float)
ret[:, :, 0] = get_light_map_drawer3(img[:, :, 0])
ret[:, :, 1] = get_light_map_drawer3(img[:, :, 1])
ret[:, :, 2] = get_light_map_drawer3(img[:, :, 2])
ret = np.amax(ret, 2)
return ret
def get_light_map_drawer3(img):
gray = img
blur = cv2.blur(gray,ksize=(5,5))
highPass = gray.astype(int) - blur.astype(int) + 255
highPass[highPass < 0 ] = 0
highPass[highPass > 255] = 255
highPass = highPass.astype(np.float)
highPass = highPass / 255.0
highPass = 1 - highPass
return highPass
def normalize_pic(img):
img = img / np.max(img)
return img
def superlize_pic(img):
img = img * 2.33333
img[img > 1] = 1
return img
def mask_pic(img,mask):
mask_mat = mask
mask_mat = mask_mat.astype(np.float)
mask_mat = cv2.GaussianBlur(mask_mat, (0, 0), 1)
mask_mat = mask_mat / np.max(mask_mat)
mask_mat = mask_mat * 255
mask_mat[mask_mat<255] = 0
mask_mat = mask_mat.astype(np.uint8)
mask_mat = cv2.GaussianBlur(mask_mat, (0, 0), 3)
mask_mat = get_gray_map(mask_mat)
mask_mat = normalize_pic(mask_mat)
mask_mat = resize_img_512(mask_mat)
super_from = np.multiply(img, mask_mat)
return super_from
def resize_img_512(img):
zeros = np.zeros((512,512,img.shape[2]), dtype=np.float)
zeros[:img.shape[0], :img.shape[1]] = img
return zeros
def resize_img_512_3d(img):
zeros = np.zeros((1,3,512,512), dtype=np.float)
zeros[0 , 0 : img.shape[0] , 0 : img.shape[1] , 0 : img.shape[2]] = img
return zeros.transpose((1,2,3,0))
def show_active_img_and_save(name,img,path):
mat = img.astype(np.float)
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat=mat.astype(np.uint8)
cv2.imshow(name,mat)
cv2.imwrite(path,mat)
return
def denoise_mat(img,i):
return ndimage.median_filter(img, i)
def show_active_img_and_save_denoise(name,img,path):
mat = img.astype(np.float)
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat=mat.astype(np.uint8)
mat = ndimage.median_filter(mat, 1)
cv2.imshow(name,mat)
cv2.imwrite(path,mat)
return
def show_active_img_and_save_denoise_filter(name,img,path):
mat = img.astype(np.float)
mat[mat<0.18] = 0
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat=mat.astype(np.uint8)
mat = ndimage.median_filter(mat, 1)
cv2.imshow(name,mat)
cv2.imwrite(path,mat)
return
def show_active_img_and_save_denoise_filter2(name,img,path):
mat = img.astype(np.float)
mat[mat<0.1] = 0
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat=mat.astype(np.uint8)
mat = ndimage.median_filter(mat, 1)
cv2.imshow(name,mat)
cv2.imwrite(path,mat)
return
def show_active_img(name,img):
mat = img.astype(np.float)
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat = mat.astype(np.uint8)
cv2.imshow(name,mat)
return
def get_active_img(img):
mat = img.astype(np.float)
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat = mat.astype(np.uint8)
return mat
def get_active_img_fil(img):
mat = img.astype(np.float)
mat[mat < 0.18] = 0
mat = - mat + 1
mat = mat * 255.0
mat[mat < 0] = 0
mat[mat > 255] = 255
mat = mat.astype(np.uint8)
return mat
def show_double_active_img(name,img):
mat = img.astype(np.float)
mat = mat * 128.0
mat = mat + 127.0
mat[mat < 0] = 0
mat[mat > 255] = 255
cv2.imshow(name,mat.astype(np.uint8))
return
def debug_pic_helper():
for index in range(1130):
gray_path = 'data\\gray\\'+str(index)+'.jpg'
color_path = 'data\\color\\' + str(index) + '.jpg'
mat_color = cv2.imread(color_path)
mat_color=get_light_map(mat_color)
mat_color=normalize_pic(mat_color)
mat_color=resize_img_512(mat_color)
show_double_active_img('mat_color',mat_color)
mat_gray = cv2.imread(gray_path)
mat_gray=get_gray_map(mat_gray)
mat_gray=normalize_pic(mat_gray)
mat_gray = resize_img_512(mat_gray)
show_active_img('mat_gray',mat_gray)
cv2.waitKey(1000)