-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
introduction.py
343 lines (303 loc) · 11 KB
/
introduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#######################################################################
# Copyright (C) #
# 2016 - 2018 Shangtong Zhang([email protected]) #
# 2016 Jan Hakenberg([email protected]) #
# 2016 Tian Jun([email protected]) #
# 2016 Kenta Shimada([email protected]) #
# Permission given to modify the code as long as you keep this #
# declaration at the top #
#######################################################################
##https://www.cnblogs.com/pinard/p/9385570.html ##
## 强化学习(一)模型基础 ##
import numpy as np
import pickle
BOARD_ROWS = 3
BOARD_COLS = 3
BOARD_SIZE = BOARD_ROWS * BOARD_COLS
class State:
def __init__(self):
# the board is represented by an n * n array,
# 1 represents a chessman of the player who moves first,
# -1 represents a chessman of another player
# 0 represents an empty position
self.data = np.zeros((BOARD_ROWS, BOARD_COLS))
self.winner = None
self.hash_val = None
self.end = None
# compute the hash value for one state, it's unique
def hash(self):
if self.hash_val is None:
self.hash_val = 0
for i in self.data.reshape(BOARD_ROWS * BOARD_COLS):
if i == -1:
i = 2
self.hash_val = self.hash_val * 3 + i
return int(self.hash_val)
# check whether a player has won the game, or it's a tie
def is_end(self):
if self.end is not None:
return self.end
results = []
# check row
for i in range(0, BOARD_ROWS):
results.append(np.sum(self.data[i, :]))
# check columns
for i in range(0, BOARD_COLS):
results.append(np.sum(self.data[:, i]))
# check diagonals
results.append(0)
for i in range(0, BOARD_ROWS):
results[-1] += self.data[i, i]
results.append(0)
for i in range(0, BOARD_ROWS):
results[-1] += self.data[i, BOARD_ROWS - 1 - i]
for result in results:
if result == 3:
self.winner = 1
self.end = True
return self.end
if result == -3:
self.winner = -1
self.end = True
return self.end
# whether it's a tie
sum = np.sum(np.abs(self.data))
if sum == BOARD_ROWS * BOARD_COLS:
self.winner = 0
self.end = True
return self.end
# game is still going on
self.end = False
return self.end
# @symbol: 1 or -1
# put chessman symbol in position (i, j)
def next_state(self, i, j, symbol):
new_state = State()
new_state.data = np.copy(self.data)
new_state.data[i, j] = symbol
return new_state
# print the board
def print(self):
for i in range(0, BOARD_ROWS):
print('-------------')
out = '| '
for j in range(0, BOARD_COLS):
if self.data[i, j] == 1:
token = '*'
if self.data[i, j] == 0:
token = '0'
if self.data[i, j] == -1:
token = 'x'
out += token + ' | '
print(out)
print('-------------')
def get_all_states_impl(current_state, current_symbol, all_states):
for i in range(0, BOARD_ROWS):
for j in range(0, BOARD_COLS):
if current_state.data[i][j] == 0:
newState = current_state.next_state(i, j, current_symbol)
newHash = newState.hash()
if newHash not in all_states.keys():
isEnd = newState.is_end()
all_states[newHash] = (newState, isEnd)
if not isEnd:
get_all_states_impl(newState, -current_symbol, all_states)
def get_all_states():
current_symbol = 1
current_state = State()
all_states = dict()
all_states[current_state.hash()] = (current_state, current_state.is_end())
get_all_states_impl(current_state, current_symbol, all_states)
return all_states
# all possible board configurations
all_states = get_all_states()
class Judger:
# @player1: the player who will move first, its chessman will be 1
# @player2: another player with a chessman -1
# @feedback: if True, both players will receive rewards when game is end
def __init__(self, player1, player2):
self.p1 = player1
self.p2 = player2
self.current_player = None
self.p1_symbol = 1
self.p2_symbol = -1
self.p1.set_symbol(self.p1_symbol)
self.p2.set_symbol(self.p2_symbol)
self.current_state = State()
def reset(self):
self.p1.reset()
self.p2.reset()
def alternate(self):
while True:
yield self.p1
yield self.p2
# @print: if True, print each board during the game
def play(self, print=False):
alternator = self.alternate()
self.reset()
current_state = State()
self.p1.set_state(current_state)
self.p2.set_state(current_state)
while True:
player = next(alternator)
if print:
current_state.print()
[i, j, symbol] = player.act()
next_state_hash = current_state.next_state(i, j, symbol).hash()
current_state, is_end = all_states[next_state_hash]
self.p1.set_state(current_state)
self.p2.set_state(current_state)
if is_end:
if print:
current_state.print()
return current_state.winner
# AI player
class Player:
# @step_size: the step size to update estimations
# @epsilon: the probability to explore
def __init__(self, step_size=0.1, epsilon=0.1):
self.estimations = dict()
self.step_size = step_size
self.epsilon = epsilon
self.states = []
self.greedy = []
def reset(self):
self.states = []
self.greedy = []
def set_state(self, state):
self.states.append(state)
self.greedy.append(True)
def set_symbol(self, symbol):
self.symbol = symbol
for hash_val in all_states.keys():
(state, is_end) = all_states[hash_val]
if is_end:
if state.winner == self.symbol:
self.estimations[hash_val] = 1.0
elif state.winner == 0:
# we need to distinguish between a tie and a lose
self.estimations[hash_val] = 0.5
else:
self.estimations[hash_val] = 0
else:
self.estimations[hash_val] = 0.5
# update value estimation
def backup(self):
# for debug
# print('player trajectory')
# for state in self.states:
# state.print()
self.states = [state.hash() for state in self.states]
for i in reversed(range(len(self.states) - 1)):
state = self.states[i]
td_error = self.greedy[i] * (self.estimations[self.states[i + 1]] - self.estimations[state])
self.estimations[state] += self.step_size * td_error
# choose an action based on the state
def act(self):
state = self.states[-1]
next_states = []
next_positions = []
for i in range(BOARD_ROWS):
for j in range(BOARD_COLS):
if state.data[i, j] == 0:
next_positions.append([i, j])
next_states.append(state.next_state(i, j, self.symbol).hash())
if np.random.rand() < self.epsilon:
action = next_positions[np.random.randint(len(next_positions))]
action.append(self.symbol)
self.greedy[-1] = False
return action
values = []
for hash, pos in zip(next_states, next_positions):
values.append((self.estimations[hash], pos))
np.random.shuffle(values)
values.sort(key=lambda x: x[0], reverse=True)
action = values[0][1]
action.append(self.symbol)
return action
def save_policy(self):
with open('policy_%s.bin' % ('first' if self.symbol == 1 else 'second'), 'wb') as f:
pickle.dump(self.estimations, f)
def load_policy(self):
with open('policy_%s.bin' % ('first' if self.symbol == 1 else 'second'), 'rb') as f:
self.estimations = pickle.load(f)
# human interface
# input a number to put a chessman
# | q | w | e |
# | a | s | d |
# | z | x | c |
class HumanPlayer:
def __init__(self, **kwargs):
self.symbol = None
self.keys = ['q', 'w', 'e', 'a', 's', 'd', 'z', 'x', 'c']
self.state = None
return
def reset(self):
return
def set_state(self, state):
self.state = state
def set_symbol(self, symbol):
self.symbol = symbol
return
def backup(self, _):
return
def act(self):
self.state.print()
key = input("Input your position:")
data = self.keys.index(key)
i = data // int(BOARD_COLS)
j = data % BOARD_COLS
return (i, j, self.symbol)
def train(epochs):
player1 = Player(epsilon=0.01)
player2 = Player(epsilon=0.01)
judger = Judger(player1, player2)
player1_win = 0.0
player2_win = 0.0
for i in range(1, epochs + 1):
winner = judger.play(print=False)
if winner == 1:
player1_win += 1
if winner == -1:
player2_win += 1
print('Epoch %d, player 1 win %.02f, player 2 win %.02f' % (i, player1_win / i, player2_win / i))
player1.backup()
player2.backup()
judger.reset()
player1.save_policy()
player2.save_policy()
def compete(turns):
player1 = Player(epsilon=0)
player2 = Player(epsilon=0)
judger = Judger(player1, player2)
player1.load_policy()
player2.load_policy()
player1_win = 0.0
player2_win = 0.0
for i in range(0, turns):
winner = judger.play()
if winner == 1:
player1_win += 1
if winner == -1:
player2_win += 1
judger.reset()
print('%d turns, player 1 win %.02f, player 2 win %.02f' % (turns, player1_win / turns, player2_win / turns))
# The game is a zero sum game. If both players are playing with an optimal strategy, every game will end in a tie.
# So we test whether the AI can guarantee at least a tie if it goes second.
def play():
while True:
player1 = HumanPlayer()
player2 = Player(epsilon=0)
judger = Judger(player1, player2)
player2.load_policy()
winner = judger.play()
if winner == player2.symbol:
print("You lose!")
elif winner == player1.symbol:
print("You win!")
else:
print("It is a tie!")
if __name__ == '__main__':
train(int(1e5))
compete(int(1e3))
play()