-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
159 lines (122 loc) · 5.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import argparse
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from tqdm import tqdm
from skimage.metrics import structural_similarity
from utils import AverageMeter,chw_to_hwc
from datasets.loader import PairLoader
#from datasets.loader import MixUp_AUG
from models import *
import cv2
import random
import numpy as np
from torchprofile import profile_macs
from skimage import color
from collections import OrderedDict
#from thop import profile
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='shadowmaskformer-b', type=str, help='model name')
parser.add_argument('--num_workers', default=8, type=int, help='number of workers')
parser.add_argument('--no_autocast', action='store_false', default=True, help='disable autocast')
parser.add_argument('--save_dir', default='./saved_models/', type=str, help='path to models saving')
parser.add_argument('--data_dir', default='E:/ISTD/data/', type=str, help='path to dataset')
parser.add_argument('--log_dir', default='./logs/', type=str, help='path to logs')
parser.add_argument('--dataset', default='ISTD', type=str, help='dataset name')
parser.add_argument('--exp', default='istd', type=str, help='experiment setting')
parser.add_argument('--gpu', default='0,1', type=str, help='GPUs used for training')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
def train(train_loader, network, criterion, optimizer, scaler, epoch):
losses = AverageMeter()
torch.cuda.empty_cache()
network.train()
for batch in train_loader:
source_img = batch['source'].cuda()
target_img = batch['target'].cuda()
mask_img = batch['mask'].cuda()
#nonmask_img = batch['nonmask'].cuda()
#condmask_img = batch['condmask'].cuda()
# if epoch > 70:
# target_img, input_, mask_img = MixUp_AUG().aug(target_img, source_img, mask_img)
with autocast(args.no_autocast):
output = network(source_img, mask_img)
loss = criterion(output, target_img)
losses.update(loss.item())
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
return losses.avg
def valid(val_loader, network):
PSNR = AverageMeter()
torch.cuda.empty_cache()
network.eval()
for batch in val_loader:
source_img = batch['source'].cuda()
target_img = batch['target'].cuda()
with torch.no_grad(): # torch.no_grad() may cause warning
output = network(source_img).clamp_(-1, 1)
mse_loss = F.mse_loss(output * 0.5 + 0.5, target_img * 0.5 + 0.5, reduction='none').mean((1, 2, 3))
psnr = 10 * torch.log10(1 / mse_loss).mean()
PSNR.update(psnr.item(), source_img.size(0))
return PSNR.avg
if __name__ == '__main__':
calculate = True
setting_filename = os.path.join('configs', args.exp, args.model+'.json')
if not os.path.exists(setting_filename):
setting_filename = os.path.join('configs', args.exp, 'default.json')
with open(setting_filename, 'r') as f:
setting = json.load(f)
network = eval(args.model.replace('-', '_'))()
network = nn.DataParallel(network).cuda()
criterion = nn.L1Loss()
if setting['optimizer'] == 'adam':
optimizer = torch.optim.Adam(network.parameters(), lr=setting['lr'], weight_decay=0.02)
elif setting['optimizer'] == 'adamw':
optimizer = torch.optim.AdamW(network.parameters(), lr=setting['lr'], weight_decay=0.02)
else:
raise Exception("ERROR: unsupported optimizer")
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=setting['epochs'], eta_min= 1e-6)
scaler = GradScaler()
dataset_dir = os.path.join(args.data_dir, args.dataset)
#dataset_dir = args.data_dir
train_dataset = PairLoader(dataset_dir, 'train', 'train', setting['edge_decay'], setting['only_h_flip'])
train_loader = DataLoader(train_dataset,
batch_size=setting['batch_size'],
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
val_dataset = PairLoader(dataset_dir, 'valid', setting['valid_mode'])
val_loader = DataLoader(val_dataset,
batch_size=setting['batch_size'],
num_workers=args.num_workers,
pin_memory=True)
save_dir = os.path.join(args.save_dir, args.exp)
os.makedirs(save_dir, exist_ok=True)
if not os.path.exists(os.path.join(save_dir, args.model+'.pth')):
print('==> Start training, current model name: ' + args.model)
# print(network)
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, args.exp, args.model))
best_psnr = 0
for epoch in tqdm(range(setting['epochs'] + 1)):
loss = train(train_loader, network, criterion, optimizer, scaler, epoch)
writer.add_scalar('train_loss', loss, epoch)
scheduler.step()
if epoch % setting['eval_freq'] == 0:
avg_psnr = valid(val_loader, network)
writer.add_scalar('valid_psnr', avg_psnr, epoch)
if avg_psnr > best_psnr:
best_psnr = avg_psnr
torch.save({'state_dict': network.state_dict()},
os.path.join(save_dir, args.model + '.pth'))
writer.add_scalar('best_psnr', best_psnr, epoch)
else:
print('==> Existing trained model')
exit(1)