-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfrontend.py
638 lines (596 loc) · 35.1 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
import onnx
import json
import numpy as np
class FrontEnd:
def __init__(self, model_path, save_path):
self.ONNX_op_2_PIMCOMP_op = {
"Conv": "OP_CONV",
"Relu": "OP_RELU",
"Tanh": "OP_TANH",
"Sigmoid": "OP_SIGMOID",
"MaxPool": "OP_POOL",
"Flatten": "OP_FLATTEN",
"Gemm": "OP_FC",
"Dropout": "OP_DROPOUT",
"LRN": "OP_LRN",
"Concat": "OP_CONCAT",
"AveragePool": "OP_POOL",
"GlobalAveragePool": "OP_POOL",
"Reshape": "OP_RESHAPE",
"Transpose": "OP_TRANSPOSE",
"Softmax": "OP_SOFTMAX",
"BatchNormalization": "OP_BN",
"Sum": "OP_ELTWISE",
"Add": "OP_ELTWISE",
"Sub": "OP_ELTWISE",
"Mul": "OP_ELTWISE",
"Pad": "OP_PAD",
"Clip": "OP_CLIP",
"Squeeze": "OP_SQUEEZE",
"MatMul": "OP_MATMUL",
"Shape": "OP_SHAPE",
"Gather": "OP_GATHER",
"Unsqueeze": "OP_UNSQUEEZE"}
self.model_path = model_path
self.save_path = save_path
self.model_name = model_path.split("/")[-1].split(".")[0]
def load_model(self):
self.model = onnx.load_model(self.model_path)
# 将输入[N,3,224,224]变为[1,3,224,224]
# for input in self.model.graph.input:
# print(input.name)
self.model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = 1
# self.model.graph.input[0].type.tensor_type.shape.dim[1].dim_value = 3
# self.model.graph.input[0].type.tensor_type.shape.dim[2].dim_value = 224
# self.model.graph.input[0].type.tensor_type.shape.dim[3].dim_value = 224
self.model = onnx.shape_inference.infer_shapes(self.model)
onnx.save(self.model, self.model_path)
self.node_num = len(self.model.graph.node)
# print(self.model.graph.value_info)
# for node in self.model.graph.node:
# if node.op_type == "Constant":
# print(node.name)
def parse_model(self):
# 对节点进行重命名
for i in range(self.node_num):
node = self.model.graph.node[i]
self.model.graph.node[i].name = node.output[0]
# 根据tensor的name获取其dim和dim_num
self.get_dim_num_from_tensor_name = {}
self.get_dim_from_tensor_name = {}
for ioput in self.model.graph.value_info:
name = ioput.name
dim_num = len(ioput.type.tensor_type.shape.dim)
dim = [ioput.type.tensor_type.shape.dim[i].dim_value for i in range(dim_num)]
# print("name=%r dim_num=%r dim=%r" % (name, dim_num, dim))
self.get_dim_num_from_tensor_name[name] = dim_num
self.get_dim_from_tensor_name[name] = dim
# Pad节点预处理:得到constant节点对应的参数值
self.pad_constant_node = {}
for node in self.model.graph.node:
if node.op_type == "Constant" and node.attribute[0].t.dims == [8]:
self.pad_constant_node[node.name] = np.frombuffer(node.attribute[0].t.raw_data, dtype = np.int64)
# 获取所有initializer_tensor的名称
self.initializer_tensor = [tensor.name for tensor in self.model.graph.initializer]
# 根据initializer_tensor的名称获取其index
self.initializer_name_to_index = dict(zip(self.initializer_tensor,[i for i in range(len(self.initializer_tensor))]))
self.constant_node = [node.name for node in self.model.graph.node if node.op_type == "Constant"]
# 获取每个节点的生产者消费者信息(最终的output没有消费者,最初的data没有生产者)
self.node_provider = {}
self.node_consumer = {}
for node in self.model.graph.node:
for input_tensor in node.input:
if not input_tensor in self.initializer_tensor and not input_tensor in self.pad_constant_node and not input_tensor in self.constant_node:
if node.name in self.node_provider:
self.node_provider[node.name] += [input_tensor]
if (self.node_consumer.get(input_tensor)):
self.node_consumer[input_tensor] += [node.name]
else:
self.node_consumer[input_tensor] = [node.name]
else:
self.node_provider[node.name] = [input_tensor]
if (self.node_consumer.get(input_tensor)):
self.node_consumer[input_tensor] += [node.name]
else:
self.node_consumer[input_tensor] = [node.name]
# 根据tensor的name获取其dim和dim_num
self.get_dim_num_from_tensor_name = {}
self.get_dim_from_tensor_name = {}
for tensor in self.model.graph.value_info:
name = tensor.name
dim_num = len(tensor.type.tensor_type.shape.dim)
dim = [tensor.type.tensor_type.shape.dim[i].dim_value for i in range(dim_num)]
self.get_dim_num_from_tensor_name[name] = dim_num
self.get_dim_from_tensor_name[name] = dim
# 增加input对应的tensor的dim_num和dim
self.input_num = len(self.model.graph.input)
self.input_names = [x.name for x in self.model.graph.input]
for i in range(self.input_num):
input_i = self.model.graph.input[i]
name = input_i.name
dim_num = len(input_i.type.tensor_type.shape.dim)
dim = [input_i.type.tensor_type.shape.dim[i].dim_value for i in range(dim_num)]
self.get_dim_num_from_tensor_name[name] = dim_num
self.get_dim_from_tensor_name[name] = dim
# 增加output对应的tensor的dim_num和dim
self.output_num = len(self.model.graph.output)
self.output_names = [x.name for x in self.model.graph.output]
for i in range(self.output_num):
output_i = self.model.graph.output[i]
name = output_i.name
dim_num = len(output_i.type.tensor_type.shape.dim)
dim = [output_i.type.tensor_type.shape.dim[i].dim_value for i in range(dim_num)]
self.get_dim_num_from_tensor_name[name] = dim_num
self.get_dim_from_tensor_name[name] = dim
def produce_info(self):
self.node_list = []
for i in range(self.input_num):
input_node = self.model.graph.input[i]
input_name = input_node.name
if (input_name in self.initializer_tensor):
continue
input_node_info = {"bitwidth": 16,
"index": len(self.node_list),
"name": input_name,
"operation": "OP_INPUT",
"provider_num": 0,
"consumer_num": len(self.node_consumer[input_name]),
"consumer": self.node_consumer[input_name],
"output_dim_num": self.get_dim_num_from_tensor_name[input_name],
"output_dim": self.get_dim_from_tensor_name[input_name]
}
input_node_info = dict(sorted(input_node_info.items()))
self.node_list.append(input_node_info)
# 首先将每个节点命名为其output tensor的名字
effective_input_num = len(self.node_list)
for i in range(self.node_num):
node = self.model.graph.node[i]
# output_name (node_name)
output_name = node.output[0]
# operation
operation = self.ONNX_op_2_PIMCOMP_op.get(node.op_type)
if node.op_type == "Constant":
continue
elif operation == None:
print("operation: ", node.op_type, " not considered")
break
# output_dim_num
output_dim_num = self.get_dim_num_from_tensor_name[output_name]
output_dim = self.get_dim_from_tensor_name[output_name]
node_info = {"bitwidth": 16,
"index": len(self.node_list),
"name": output_name,
"operation": operation,
"output_dim_num": output_dim_num,
"output_dim": output_dim
}
# params
params = {}
attribute = node.attribute
if node.op_type == "Conv":
node_info["with_bn"] = 0
node_info["with_act"] = 0
node_info["act_type"] = -1
node_info["with_clip"] = 0
node_info["clip_min"] = -10000000
node_info["clip_max"] = 10000000
param_num = len(attribute)
for one_param in attribute:
if (one_param.name == "strides"):
params["stride_h"] = one_param.ints[0]
params["stride_w"] = one_param.ints[1]
if (one_param.name == "group"):
params["group"] = one_param.i
if (one_param.name == "pads"):
params["pad_h0"] = one_param.ints[0]
params["pad_h1"] = one_param.ints[2]
params["pad_w0"] = one_param.ints[1]
params["pad_w1"] = one_param.ints[3]
if (one_param.name == "kernel_shape"):
params["kernel_h"] = one_param.ints[0]
params["kernel_w"] = one_param.ints[1]
if (one_param.name == "dilations"):
params["dilation_h"] = one_param.ints[0]
params["dilation_w"] = one_param.ints[1]
params["input_channel"] = self.get_dim_from_tensor_name[self.node_provider[output_name][0]][1]
params["output_channel"] = output_dim[1]
if len(node.input) == 2:
params["with_bias"] = 0
elif len(node.input) == 3:
params["with_bias"] = 1
elif node.op_type == "MaxPool":
param_num = len(attribute)
for one_param in attribute:
if (one_param.name == "strides"):
params["stride_h"] = one_param.ints[0]
params["stride_w"] = one_param.ints[1]
if (one_param.name == "pads"):
params["pad_h0"] = one_param.ints[0]
params["pad_h1"] = one_param.ints[2]
params["pad_w0"] = one_param.ints[1]
params["pad_w1"] = one_param.ints[3]
if (one_param.name == "kernel_shape"):
params["kernel_h"] = one_param.ints[0]
params["kernel_w"] = one_param.ints[1]
params["pool_method"] = 0
params["global"] = 0
elif node.op_type == "AveragePool":
param_num = len(attribute)
for one_param in attribute:
if (one_param.name == "strides"):
params["stride_h"] = one_param.ints[0]
params["stride_w"] = one_param.ints[1]
if (one_param.name == "pads"):
params["pad_h0"] = one_param.ints[0]
params["pad_h1"] = one_param.ints[2]
params["pad_w0"] = one_param.ints[1]
params["pad_w1"] = one_param.ints[3]
if (one_param.name == "kernel_shape"):
params["kernel_h"] = one_param.ints[0]
params["kernel_w"] = one_param.ints[1]
params["pool_method"] = 1
params["global"] = 0
elif node.op_type == "GlobalAveragePool":
params["stride_h"] = 1
params["stride_w"] = 1
params["pad_h0"] = 0
params["pad_h1"] = 0
params["pad_w0"] = 0
params["pad_w1"] = 0
params["kernel_h"] = self.get_dim_from_tensor_name[self.node_provider[output_name][0]][2]
params["kernel_w"] = self.get_dim_from_tensor_name[self.node_provider[output_name][0]][3]
params["pool_method"] = 1
params["global"] = 1
elif node.op_type == "Pad":
# Pad在ONNX中可能有两种表示。所以分情况处理。
if len(node.input) == 1: # 把参数直接写进attribute中
params["pad_0_h"] = attribute[1].ints[0]
params["pad_0_w"] = attribute[1].ints[4]
params["pad_1_h"] = attribute[1].ints[1]
params["pad_1_w"] = attribute[1].ints[5]
params["pad_2_h"] = attribute[1].ints[2]
params["pad_2_w"] = attribute[1].ints[6]
params["pad_3_h"] = attribute[1].ints[3]
params["pad_3_w"] = attribute[1].ints[7]
else: # 把参数直接写进常量中
pad_constant_name = node.input[1]
# 这里的0_h和0_w其实是第0个维度上begin和end的意思。这个表述应该是和tengine一致。
params["pad_0_h"] = int(self.pad_constant_node[pad_constant_name][0])
params["pad_0_w"] = int(self.pad_constant_node[pad_constant_name][4])
params["pad_1_h"] = int(self.pad_constant_node[pad_constant_name][1])
params["pad_1_w"] = int(self.pad_constant_node[pad_constant_name][5])
params["pad_2_h"] = int(self.pad_constant_node[pad_constant_name][2])
params["pad_2_w"] = int(self.pad_constant_node[pad_constant_name][6])
params["pad_3_h"] = int(self.pad_constant_node[pad_constant_name][3])
params["pad_3_w"] = int(self.pad_constant_node[pad_constant_name][7])
params["value"] = 0
elif node.op_type == "Gemm":
node_info["with_bn"] = 0
node_info["with_act"] = 0
node_info["act_type"] = -1
node_info["with_clip"] = 0
node_info["clip_min"] = -10000000
node_info["clip_max"] = 10000000
if len(self.get_dim_from_tensor_name[self.node_provider[output_name][0]]) > 1:
params["input_channel"] = self.get_dim_from_tensor_name[self.node_provider[output_name][0]][1]
else:
weight_index = self.initializer_name_to_index[node.input[1]]
params["input_channel"] = self.model.graph.initializer[weight_index].dims[1]
params["output_channel"] = output_dim[1]
if len(node.input) == 2:
params["with_bias"] = 0
elif len(node.input) == 3:
params["with_bias"] = 1
elif node.op_type == "Add" or node.op_type == "Sum" or node.op_type == "Mul":
params["eletype"] = 2
elif node.op_type == "Sub":
params["eletype"] = 4
elif node.op_type == "Clip":
# 假设data_type都是1,也就是float
if len(node.input) > 1 and node.input[1] in self.initializer_name_to_index and node.input[2] in self.initializer_name_to_index:
min_index = self.initializer_name_to_index[node.input[1]]
min_value = float(np.frombuffer(self.model.graph.initializer[min_index].raw_data, dtype=np.float32))
max_index = self.initializer_name_to_index[node.input[2]]
max_value = float(np.frombuffer(self.model.graph.initializer[max_index].raw_data, dtype=np.float32))
params["min"] = min_value
params["max"] = max_value
else:
min_value = node.attribute[1].f
max_value = node.attribute[0].f
params["min"] = min_value
params["max"] = max_value
params = dict(sorted(params.items()))
if params != {}:
node_info["param"] = params
# consumer and provider
if self.node_consumer.get(output_name):
consumer_num = len(self.node_consumer[output_name])
node_info["consumer_num"] = consumer_num
node_info["consumer"] = self.node_consumer[output_name]
else:
node_info["consumer_num"] = 0
if self.node_provider.get(output_name):
provider_num = len(self.node_provider[output_name])
node_info["provider_num"] = provider_num
node_info["provider"] = self.node_provider[output_name]
else:
node_info["provider_num"] = 0
node_info = dict(sorted(node_info.items()))
self.node_list.append(node_info)
# Get Input Dim
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list],[i for i in range(node_num)]))
for idx in range(node_num):
node = self.node_list[idx]
if "provider" in node.keys():
provider_index = name_2_index_map[node["provider"][0]]
input_dim_num = self.node_list[provider_index]["output_dim_num"]
self.node_list[idx]["input_dim_num"] = input_dim_num
self.node_list[idx]["input_dim"] = []
for input_idx in range(input_dim_num):
self.node_list[idx]["input_dim"].append(self.node_list[provider_index]["output_dim"][input_idx])
def optimize_model(self):
self.manual_fix()
self.clear_unused_struct()
self.optimize_for_shuffle()
self.merge_padding()
self.fuse_operators()
self.final_process()
def manual_fix(self):
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list], [i for i in range(node_num)]))
# fix onnx info for mobilenetv2
if self.model_name == "mobilenetv2":
reshape_node_index = name_2_index_map["472"]
reshape_provider_index = name_2_index_map["464"]
self.node_list[reshape_node_index]["output_dim_num"] = 2
self.node_list[reshape_node_index]["output_dim"] = self.node_list[reshape_provider_index]["output_dim"][0:2]
gemm_node_index = name_2_index_map["output"]
self.node_list[gemm_node_index]["input_dim_num"] = self.node_list[reshape_node_index]["output_dim_num"]
self.node_list[gemm_node_index]["input_dim"] = self.node_list[reshape_node_index]["output_dim"]
self.node_list[gemm_node_index]["output_dim_num"] = 2
self.node_list[gemm_node_index]["output_dim"][0] = 1
# record reshape or flatten node before FC node
self.reshape_info = {}
for node in self.node_list:
if node["operation"] == "OP_FLATTEN" or node["operation"] == "OP_RESHAPE":
if node["consumer_num"] == 1:
consumer_index = name_2_index_map[node["consumer"][0]]
consumer_node = self.node_list[consumer_index]
if consumer_node["operation"] == "OP_FC":
if node["input_dim_num"] != 2:
# print(node)
# print(node["input_dim"])
# print(node["output_dim"])
self.reshape_info = {"name": consumer_node["name"],
"input_dim": node["input_dim"],
"output_dim": node["output_dim"]
}
def clear_unused_struct(self):
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list],[i for i in range(node_num)]))
delete_index_list = []
# Shape - Gather - Unsqueeze - Concat
for idx in range(node_num):
node = self.node_list[idx]
if node["operation"] == "OP_SHAPE":
consumer_1st_order_index = name_2_index_map[node["consumer"][0]]
consumer_1st_order_node = self.node_list[consumer_1st_order_index]
if consumer_1st_order_node["operation"] == "OP_GATHER":
consumer_2nd_order_index = name_2_index_map[consumer_1st_order_node["consumer"][0]]
consumer_2nd_order_node = self.node_list[consumer_2nd_order_index]
if consumer_2nd_order_node["operation"] == "OP_UNSQUEEZE":
consumer_3rd_order_index = name_2_index_map[consumer_2nd_order_node["consumer"][0]]
consumer_3rd_order_node = self.node_list[consumer_3rd_order_index]
if consumer_3rd_order_node["operation"] == "OP_CONCAT":
delete_index_list.append(idx)
delete_index_list.append(consumer_1st_order_index)
delete_index_list.append(consumer_2nd_order_index)
delete_index_list.append(consumer_3rd_order_index)
# Shape's provider's consumer
shape_provider_index = name_2_index_map[node["provider"][0]]
new_consumer_list = []
for consumer_name in self.node_list[shape_provider_index]["consumer"]:
if consumer_name != node["name"]:
new_consumer_list.append(consumer_name)
self.node_list[shape_provider_index]["consumer"] = new_consumer_list
self.node_list[shape_provider_index]["consumer_num"] -= 1
print(self.node_list[shape_provider_index]["consumer"])
print(self.node_list[shape_provider_index]["consumer_num"])
# Concat's consumer's provider
concat_consumer_index = name_2_index_map[consumer_3rd_order_node["consumer"][0]]
new_provider_list = []
for provider_name in self.node_list[concat_consumer_index]["provider"]:
if provider_name != consumer_3rd_order_node["name"]:
new_provider_list.append(provider_name)
self.node_list[concat_consumer_index]["provider"] = new_provider_list
self.node_list[concat_consumer_index]["provider_num"] -= 1
print(self.node_list[concat_consumer_index]["provider"])
print(self.node_list[concat_consumer_index]["provider_num"])
# delete unused node
delete_index_list = sorted(delete_index_list)
for del_idx, del_node_idx in enumerate(delete_index_list):
print("delete node",self.node_list[del_node_idx - del_idx]["name"], "unused")
del self.node_list[del_node_idx - del_idx]
def optimize_for_shuffle(self):
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list],[i for i in range(node_num)]))
delete_index_list = []
shuffle_num = 0
# Reshape - Transpose - Reshape
for idx in range(node_num):
node = self.node_list[idx]
if node["operation"] == "OP_RESHAPE":
consumer_1st_order_index = name_2_index_map[node["consumer"][0]]
consumer_1st_order_node = self.node_list[consumer_1st_order_index]
if consumer_1st_order_node["operation"] == "OP_TRANSPOSE":
consumer_2nd_order_index = name_2_index_map[consumer_1st_order_node["consumer"][0]]
consumer_2nd_order_node = self.node_list[consumer_2nd_order_index]
if consumer_2nd_order_node["operation"] == "OP_RESHAPE":
shuffle_node_info = {"bitwidth": 16,
"index": len(self.node_list),
"name": consumer_2nd_order_node["name"] , # facilitate verification
"operation": "OP_SHUFFLE",
"output_dim_num": self.node_list[consumer_2nd_order_index]["output_dim_num"],
"output_dim": self.node_list[consumer_2nd_order_index]["output_dim"],
"input_dim_num": node["input_dim_num"],
"input_dim": node["input_dim"],
"provider_num": node["provider_num"],
"provider": node["provider"],
"consumer_num": consumer_2nd_order_node["consumer_num"],
"consumer": consumer_2nd_order_node["consumer"],
"param": {"input_channel":node["output_dim"][1] * node["output_dim"][2],
"split_factor":node["output_dim"][1]} }
# the first reshape's provider
reshape1_provider_index = name_2_index_map[node["provider"][0]]
for c_idx, consumer_name in enumerate(self.node_list[reshape1_provider_index]["consumer"]):
if consumer_name == node["name"]:
self.node_list[reshape1_provider_index]["consumer"][c_idx] = shuffle_node_info["name"]
print(self.node_list[reshape1_provider_index]["consumer"])
# the second reshape's consumer
reshape2_consumer_index = name_2_index_map[consumer_2nd_order_node["consumer"][0]]
for p_idx, provider_name in enumerate(self.node_list[reshape2_consumer_index]["provider"]):
if provider_name == consumer_2nd_order_node["name"]:
self.node_list[reshape2_consumer_index]["provider"][p_idx] = shuffle_node_info["name"]
self.node_list[idx] = shuffle_node_info
delete_index_list.append(consumer_1st_order_index)
delete_index_list.append(consumer_2nd_order_index)
shuffle_num += 1
# delete unused node
delete_index_list = sorted(delete_index_list)
for del_idx, del_node_idx in enumerate(delete_index_list):
print("delete node", self.node_list[del_node_idx - del_idx]["name"])
del self.node_list[del_node_idx - del_idx]
def merge_padding(self):
delete_node_index = []
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list], [i for i in range(node_num)]))
for idx, pad_node in enumerate(self.node_list):
if pad_node["operation"] == "OP_PAD":
if pad_node["consumer_num"] == 1:
consumer_index = name_2_index_map[pad_node["consumer"][0]]
consumer_node = self.node_list[consumer_index]
if consumer_node["provider_num"] == 1 and (consumer_node["operation"] == "OP_CONV" or consumer_node["operation"] == "OP_POOL"):
self.node_list[consumer_index]["provider_num"] = pad_node["provider_num"]
self.node_list[consumer_index]["provider"] = []
for pad_provider in pad_node["provider"]:
self.node_list[consumer_index]["provider"].append(pad_provider)
pad_provider_index = name_2_index_map[pad_provider]
pad_provider_node = self.node_list[pad_provider_index]
for ppc_idx, pad_provider_consumer in enumerate(pad_provider_node["consumer"]):
if pad_provider_consumer == pad_node["name"]:
self.node_list[pad_provider_index]["consumer"][ppc_idx] = consumer_node["name"]
pad_0_h = self.node_list[idx]["param"]["pad_0_h"]
pad_0_w = self.node_list[idx]["param"]["pad_0_w"]
pad_1_h = self.node_list[idx]["param"]["pad_1_h"]
pad_1_w = self.node_list[idx]["param"]["pad_1_w"]
assert pad_0_h == 0 and pad_0_w == 0 and pad_1_h == 0 and pad_1_w == 0, print('Frontend Error')
pad_2_h = self.node_list[idx]["param"]["pad_2_h"]
pad_2_w = self.node_list[idx]["param"]["pad_2_w"]
pad_3_h = self.node_list[idx]["param"]["pad_3_h"]
pad_3_w = self.node_list[idx]["param"]["pad_3_w"]
self.node_list[consumer_index]["param"]["pad_h0"] += pad_2_h
self.node_list[consumer_index]["param"]["pad_h1"] += pad_2_w
self.node_list[consumer_index]["param"]["pad_w0"] += pad_3_h
self.node_list[consumer_index]["param"]["pad_w1"] += pad_3_w
self.node_list[consumer_index]["input_dim_num"] = pad_node["input_dim_num"]
self.node_list[consumer_index]["input_dim"] = pad_node["input_dim"]
delete_node_index.append(idx)
for del_idx, del_node_idx in enumerate(delete_node_index):
print("delete node", self.node_list[del_node_idx - del_idx]["name"],
self.node_list[del_node_idx - del_idx]["operation"])
del self.node_list[del_node_idx - del_idx]
def fuse_operators(self):
# fuse_operator_list = ["OP_BN", "OP_RELU", "OP_TANH", "OP_SIGMOID", "OP_CLIP"]
fuse_operator_list = ["OP_BN", "OP_RELU", "OP_TANH", "OP_SIGMOID"]
for fuse_idx, fuse_operator in enumerate(fuse_operator_list):
delete_node_index = []
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list],[i for i in range(node_num)]))
for idx, fuse_node in enumerate(self.node_list):
if fuse_node["operation"] == fuse_operator:
# the fuse operator has only one provider
if fuse_node["provider_num"] == 1:
provider_index = name_2_index_map[fuse_node["provider"][0]]
provider_node = self.node_list[provider_index]
# the provider of the fuse operator has only one consumer
if provider_node["consumer_num"] == 1 and (provider_node["operation"] == "OP_CONV"
or provider_node["operation"] == "OP_FC"):
if fuse_idx == 0:
self.node_list[provider_index]["with_bn"] = 1
elif fuse_idx == 1 or fuse_idx == 2 or fuse_idx == 3:
self.node_list[provider_index]["with_act"] = 1
self.node_list[provider_index]["act_type"] = fuse_idx - 1
# elif fuse_idx == 4:
# self.node_list[provider_index]["with_clip"] = 1
# self.node_list[provider_index]["clip_min"] = fuse_node["param"]["min"]
# self.node_list[provider_index]["clip_max"] = fuse_node["param"]["max"]
self.node_list[provider_index]["consumer_num"] = fuse_node["consumer_num"]
self.node_list[provider_index]["consumer"] = []
for fuse_consumer in fuse_node["consumer"]:
self.node_list[provider_index]["consumer"].append(fuse_consumer)
fuse_consumer_index = name_2_index_map[fuse_consumer]
fuse_consumer_node = self.node_list[fuse_consumer_index]
for fcp_idx, fuse_consumer_provider in enumerate(fuse_consumer_node["provider"]):
if fuse_consumer_provider == fuse_node["name"]:
self.node_list[fuse_consumer_index]["provider"][fcp_idx] = provider_node["name"]
delete_node_index.append(idx)
for del_idx, del_node_idx in enumerate(delete_node_index):
# print("delete node", self.node_list[del_node_idx - del_idx]["name"],
# self.node_list[del_node_idx - del_idx]["operation"])
del self.node_list[del_node_idx - del_idx]
def final_process(self):
node_num = len(self.node_list)
name_2_index_map = dict(zip([node["name"] for node in self.node_list], [i for i in range(node_num)]))
# Reorder the index
for idx in range(node_num):
self.node_list[idx]["index"] = idx
self.node_list[idx]["new_node_index"] = idx
# Get the Provider_Index and Consumer_Index
for idx in range(node_num):
node = self.node_list[idx]
if "consumer_num" in node.keys():
consumer_num = node["consumer_num"]
self.node_list[idx]["consumer_index"] = []
for j in range(consumer_num):
consumer_name = node["consumer"][j]
consumer_index = name_2_index_map[consumer_name]
self.node_list[idx]["consumer_index"].append(consumer_index)
if "provider_num" in node.keys():
provider_num = node["provider_num"]
self.node_list[idx]["provider_index"] = []
for j in range(provider_num):
provider_name = node["provider"][j]
provider_index = name_2_index_map[provider_name]
self.node_list[idx]["provider_index"].append(provider_index)
def check_info(self):
pass
def save_info(self):
# node_list_wrapper = {"node_list": self.node_list,
# "reshape_info": self.reshape_info}
with open(self.save_path, "w", encoding='utf-8') as file:
json.dump(self.node_list, file, ensure_ascii=False, indent=4)
def run(self):
self.load_model()
self.parse_model()
self.produce_info()
self.optimize_model()
self.check_info()
self.save_info()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='PIMCOMPP FrontEnd Module')
parser.add_argument("-ModelPath", "--model_path",
default="./models/ONNX/squeezenet.onnx",
help="onnx model path")
parser.add_argument("-SavePath", "--save_path",
default="./models/JSON/squeezenet.json",
help="json file save path")
args = parser.parse_args()
frontend = FrontEnd(args.model_path, args.save_path)
frontend.load_model()
frontend.parse_model()
frontend.produce_info()
frontend.optimize_model()
frontend.check_info()
frontend.save_info()