-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrqn.py
86 lines (56 loc) · 3.23 KB
/
drqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
import numpy as np
class QNetwork:
def __init__(self, learning_rate=0.01, state_size=4,
action_size=2, hidden_size=10, step_size=1 ,
name='QNetwork'):
with tf.variable_scope(name):
self.inputs_ = tf.placeholder(tf.float32, [None,step_size, state_size], name='inputs_')
self.actions_ = tf.placeholder(tf.int32, [None], name='actions')
one_hot_actions = tf.one_hot(self.actions_, action_size)
self.targetQs_ = tf.placeholder(tf.float32, [None], name='target')
##########################################
self.lstm = tf.contrib.rnn.BasicLSTMCell(hidden_size)
self.lstm_out, self.state = tf.nn.dynamic_rnn(self.lstm,self.inputs_,dtype=tf.float32)
self.reduced_out = self.lstm_out[:,-1,:]
self.reduced_out = tf.reshape(self.reduced_out,shape=[-1,hidden_size])
#########################################
#self.w1 = tf.Variable(tf.random_uniform([state_size,hidden_size]))
#self.b1 = tf.Variable(tf.constant(0.1,shape=[hidden_size]))
#self.h1 = tf.matmul(self.inputs_,self.w1) + self.b1
#self.h1 = tf.nn.relu(self.h1)
#self.h1 = tf.contrib.layers.layer_norm(self.h1)
#'''
self.w2 = tf.Variable(tf.random_uniform([hidden_size,hidden_size]))
self.b2 = tf.Variable(tf.constant(0.1,shape=[hidden_size]))
self.h2 = tf.matmul(self.reduced_out,self.w2) + self.b2
self.h2 = tf.nn.relu(self.h2)
self.h2 = tf.contrib.layers.layer_norm(self.h2)
self.w3 = tf.Variable(tf.random_uniform([hidden_size,action_size]))
self.b3 = tf.Variable(tf.constant(0.1,shape=[action_size]))
self.output = tf.matmul(self.h2,self.w3) + self.b3
#self.output = tf.contrib.layers.layer_norm(self.output)
'''
self.fc1 = tf.contrib.layers.fully_connected(self.inputs_, hidden_size)
self.fc2 = tf.contrib.layers.fully_connected(self.fc1, hidden_size)
self.output = tf.contrib.layers.fully_connected(self.fc2, action_size,activation_fn=None)
'''
self.Q = tf.reduce_sum(tf.multiply(self.output, one_hot_actions), axis=1)
self.loss = tf.reduce_mean(tf.square(self.targetQs_ - self.Q))
self.opt = tf.train.AdamOptimizer(learning_rate).minimize(self.loss)
from collections import deque
class Memory():
def __init__(self, max_size=1000):
self.buffer = deque(maxlen=max_size)
def add(self, experience):
self.buffer.append(experience)
def sample(self, batch_size,step_size):
idx = np.random.choice(np.arange(len(self.buffer)-step_size),
size=batch_size, replace=False)
res = []
for i in idx:
temp_buffer = []
for j in range(step_size):
temp_buffer.append(self.buffer[i+j])
res.append(temp_buffer)
return res