Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add HWP support to 4pi convolution #13

Open
mreineck opened this issue Mar 3, 2020 · 6 comments
Open

Add HWP support to 4pi convolution #13

mreineck opened this issue Mar 3, 2020 · 6 comments
Assignees

Comments

@mreineck
Copy link
Collaborator

mreineck commented Mar 3, 2020

For a telescope with a half-wave-plate, the classic 4pi convolution output (which consists of a single measurement value for every detector pointing) is not sufficient; the code should rather provide three values corresponding to the unpolarized, perfectly co-polarized and perfectly cross-polarized beam, respectively.
I do not expect great difficulties when adding this to interpol_ng, but I will need help with the exact definition of the individual beam components.

@mreineck mreineck self-assigned this Mar 3, 2020
@mreineck
Copy link
Collaborator Author

I decided to just provide the convolved T, E and B components separately; this should be sufficient.

This can always be updated in the case that a better suited triple of numbers is defined.

@mreineck
Copy link
Collaborator Author

Support for an ideal HWP has been added, non-ideal HWP will take a few more weeks.

@mreineck
Copy link
Collaborator Author

mreineck commented May 5, 2022

It seems that I'm finally approaching a solution for fully general HWP support. The demonstration code is ready, but I really need help to come up with good unit tests so we can locate and fix the remaining bugs.

@giuspugl, @keskitalo, @ziotom78, @tskisner, @hke I'd be very happy if you could have a look at the code snippet below, play around with it and tell me your opinion.

import ducc0
import numpy as np


def nalm(lmax, mmax):
    return ((mmax+1)*(mmax+2))//2 + (mmax+1)*(lmax-mmax)


# Adri 2020 A25/A35
def mueller_to_C(mueller):
    T = np.zeros((4,4),dtype=np.complex128)
    T[0,0] = T[3,3] = 1.
    T[1,1] = T[2,1] = 1./np.sqrt(2.)
    T[1,2] = 1j/np.sqrt(2.)
    T[2,2] = -1j/np.sqrt(2.)
    C = T.dot(mueller.dot(np.conj(T.T)))
    return C


# Class for computing convolutions between arbitrary beams and skies in the
# presence of an optical element with arbitrary Mueller matrix in front of the
# detector.
class MuellerConvolver:
    """Class for computing convolutions between arbitrary beams and skies in the
    presence of an optical element with arbitrary Mueller matrix in front of the
    detector.

    Parameters
    ----------
    lmax : int
        maximum l moment of the provided sky and beam a_lm
    kmax : int
        maximum m moment of the provided beam a_lm
    slm : numpy.ndarray((n_comp, n_slm), stype=np.complex128)
        input sky a_lm
        ncomp can be 1, 3, or 4, for T, TEB, TEBV components, respectively
        the components have the a_lm format used by healpy
    blm : numpy.ndarray((n_comp, n_blm), stype=np.complex128)
        input beam a_lm
        ncomp can be 1, 3, or 4, for T, TEB, TEBV components, respectively
        the components have the a_lm format used by healpy
    mueller : np.ndarray((4,4), dtype=np.float64)
        Mueller matrix of the optical elemen in front of the detector
    epsilon : float
        desired accuracy for the interpolation; a typical value is 1e-4
    ofactor : float
        oversampling factor to be used for the interpolation grids.
        Should be in the range [1.2; 2], a typical value is 1.5
        Increasing this factor makes (adjoint) convolution slower and
        increases memory consumption, but speeds up interpolation/deinterpolation.
    nthreads : the number of threads to use for computation
    """

    # Very simple class to store a_lm that allow negative m values
    class AlmPM:
        def __init__(self, lmax, mmax):
            if lmax < 0 or mmax < 0 or lmax < mmax:
                raise ValueError("bad parameters")
            self._lmax, self._mmax = lmax, mmax
            self._data = np.zeros((2*mmax+1, lmax+1), dtype=np.complex128)

        def __getitem__(self, lm):
            l, m = lm

            if isinstance(l, slice):
                if l.step is not None or l.start < 0 or l.stop-1 > self._lmax:
                    print(l,m)
                    raise ValueError("out of bounds read access")
            else:
                if l < 0 or l > self._lmax: # or abs(m) > l:
                    print(l,m)
                    raise ValueError("out of bounds read access")
            # if we are asked for elements outside our m range, return 0
            if m < -self._mmax or m > self._mmax:
                return 0.+0j
            return self._data[m+self._mmax, l]

        def __setitem__(self, lm, val):
            l, m = lm
            if isinstance(l, slice):
                if l.step is not None or l.start < 0 or l.stop-1 > self._lmax:
                    print(l,m)
                    raise ValueError("out of bounds write access")
            else:
                if l < 0 or l > self._lmax or abs(m) > l or  m < -self._mmax or m > self._mmax:
                    print(l,m)
                    raise ValueError("out of bounds write access")
            self._data[m+self._mmax, l] = val


    def mueller_tc_prep (self, blm, mueller, lmax, mmax):
        ncomp = blm.shape[0]

        # convert input blm to T/P/P*/V blm
        blm2 = [self.AlmPM(lmax, mmax+4) for _ in range(4)]
        idx = 0
        for m in range(mmax+1):
            sign = (-1)**m
            lrange = slice(m, lmax+1)
            idxrange = slice(idx, idx+lmax+1-m)
            # T component
            blm2[0][lrange, m] = blm[0, idxrange]
            blm2[0][lrange,-m] = np.conj(blm[0, idxrange]) * sign
            # V component
            if ncomp > 3:
                blm2[3][lrange, m] = blm[3, idxrange]
                blm2[3][lrange,-m] = np.conj(blm[3, idxrange]) * sign
            # E/B components
            if ncomp > 2:
                # Adri's notes [10]
                blm2[1][lrange,m] = -(blm[1,idxrange] + 1j*blm[2,idxrange]) # spin +2
                # Adri's notes [9]
                blm2[2][lrange,m] = -(blm[1,idxrange] - 1j*blm[2,idxrange]) # spin -2
                # negative m
                # Adri's notes [2]
                blm2[1][lrange,-m] = np.conj(blm2[2][lrange,m]) * sign
                blm2[2][lrange,-m] = np.conj(blm2[1][lrange,m]) * sign
            idx += lmax+1-m

        C = mueller_to_C(mueller)

        # compute the blm for the full beam+Mueller matrix system at angles
        # n*pi/5 for n in [0; 5[
        sqrt2 = np.sqrt(2.)
        nbeam = 5
        inc = 4
        res = np.zeros((nbeam, ncomp, nalm(lmax, mmax+inc)), dtype=np.complex128)
        blm_eff = [self.AlmPM(lmax, mmax+4) for _ in range(4)]

        for ibeam in range(nbeam):
            alpha = ibeam*np.pi/nbeam
            e2ia = np.exp(2*1j*alpha)
            e2iac = np.exp(-2*1j*alpha)
            e4ia = np.exp(4*1j*alpha)
            e4iac = np.exp(-4*1j*alpha)
            for m in range(-mmax-4, mmax+4+1):
                lrange = slice(abs(m), lmax+1)
                # T component, Marta notes [4a]
                blm_eff[0][lrange, m] = \
                      C[0,0]*blm2[0][lrange,m] \
                    + C[3,0]*blm2[3][lrange,m] \
                    + 1./sqrt2*(C[1,0]*blm2[2][lrange,m+2]*e2ia \
                              + C[2,0]*blm2[1][lrange,m-2]*e2iac)
                # V component, Marta notes [4d]
                blm_eff[3][lrange, m] = \
                      C[0,3]*blm2[0][lrange,m] \
                    + C[3,3]*blm2[3][lrange,m] \
                    + 1./sqrt2*(C[1,3]*blm2[2][lrange,m+2]*e2ia \
                              + C[2,3]*blm2[1][lrange,m-2]*e2iac)
                # E/B components, Marta notes [4b,c]
                blm_eff[1][lrange, m] = \
                      sqrt2*e2iac*(C[0,1]*blm2[0][lrange,m+2] \
                                 + C[3,1]*blm2[3][lrange,m+2]) \
                    + C[2,1]*e4iac*blm2[2][lrange,m+4] \
                    + C[1,1]*blm2[1][lrange,m]
                blm_eff[2][lrange, m] = \
                      sqrt2*e2ia*(C[0,2]*blm2[0][lrange,m-2] \
                                + C[3,2]*blm2[3][lrange,m-2]) \
                    + C[1,2]*e4ia*blm2[1][lrange,m-4] \
                    + C[2,2]*blm2[2][lrange,m]

            # back to original TEBV b_lm format
            idx = 0
            for m in range(mmax+inc+1):
                lrange = slice(m, lmax+1)
                idxrange = slice(idx, idx+lmax+1-m)
                # T component
                res[ibeam, 0, idxrange] = blm_eff[0][lrange, m]
                # V component
                if ncomp > 3:
                    res[ibeam, 3, idxrange] = blm_eff[3][lrange, m]
                # E/B components
                if ncomp > 2:
                    # Adri's notes [10]
                    res[ibeam, 1, idxrange] = -0.5*(blm_eff[1][lrange, m] \
                                                   +blm_eff[2][lrange, m])
                    res[ibeam, 2, idxrange] = 0.5j*(blm_eff[1][lrange, m] \
                                                   -blm_eff[2][lrange, m])
                idx += lmax+1-m

        return res

    # "Fourier transform" the blm at different alpha to obtain
    # blm(alpha) = out[0] + cos(2*alpha)*out[1] + sin(2*alpha)*out[2]
    #                     + cos(4*alpha)*out[3] + sin(4*alpha)*out[4]
    def pseudo_fft(self, inp):
        out = np.zeros((5, inp.shape[1], inp.shape[2]), dtype=np.complex128)
        out[0] = 0.2*(inp[0]+inp[1]+inp[2]+inp[3]+inp[4])
        # FIXME: I'm not absolutely sure about the sign of the angles yet
        c1, s1 = np.cos(2*np.pi/5), np.sin(2*np.pi/5)
        c2, s2 = np.cos(4*np.pi/5), np.sin(4*np.pi/5)
        out[1] = 0.4*(inp[0] + c1*(inp[1]+inp[4]) + c2*(inp[2]+inp[3]))
        out[2] = 0.4*(s1*(inp[1]-inp[4]) + s2*(inp[2]-inp[3]))
        out[3] = 0.4*(inp[0] + c2*(inp[1]+inp[4]) + c1*(inp[2]+inp[3]))
        out[4] = 0.4*(s2*(inp[1]-inp[4]) - s1*(inp[2]-inp[3]))
        return out

    def __init__ (self, lmax, kmax, slm, blm, mueller, epsilon=1e-4,
                  ofactor=1.5, nthreads=1):
        self._slm = slm
        self._lmax = lmax
        self._kmax = kmax
        tmp = self.mueller_tc_prep (blm, mueller, lmax, kmax)
        tmp = self.pseudo_fft(tmp)

        # construct the five interpolators for the individual components
        # With some enhancements in the C++ code I could put this into a single
        # interpolator for better performance, but for now this should do.
        # If the blm for any interpolator are very small in comparison to the
        # others, the interpolator is replaced by a `None` object.
        maxval = [np.max(np.abs(x)) for x in tmp]
        maxmax = max(maxval)
        self._inter = []
        for i in range(5):
            if maxval[i] > 1e-10*maxmax:  # component is not zero
                self._inter.append(ducc0.totalconvolve.Interpolator(slm,
                                   tmp[i], False, self._lmax, self._kmax+4,
                                   epsilon=epsilon, ofactor=ofactor,
                                   nthreads=nthreads))
            else:  # we can ignore this component
#                print ("component",i,"vanishes")
                self._inter.append(None)

    def signal(self, ptg, alpha):
        """Computes the convolved signal for a set of pointings and HWP angles.

        Parameters
        ----------
        ptg : numpy.ndarray((nptg, 3), dtype=np.float64)
            the input pointings, in (theta, phi, psi) order
        alpha : numpy.ndarray((nptg,), dtype=np.float64)
            the HWP angles

        Returns
        -------
        signal : numpy.ndarray((nptg,), dtype=np.float64)
            the signal measured by the detector
        """
        res = self._inter[0].interpol(ptg)[0]
        if self._inter[1] is not None:
            res += np.cos(2*alpha)*self._inter[1].interpol(ptg)[0]
        if self._inter[2] is not None:
            res += np.sin(2*alpha)*self._inter[2].interpol(ptg)[0]
        if self._inter[3] is not None:
            res += np.cos(4*alpha)*self._inter[3].interpol(ptg)[0]
        if self._inter[4] is not None:
            res += np.sin(4*alpha)*self._inter[4].interpol(ptg)[0]
        return res


# demo application

def main():
    rng = np.random.default_rng(41)

    def random_alm(lmax, mmax, ncomp):
        res = rng.uniform(-1., 1., (ncomp, nalm(lmax, mmax))) \
         + 1j*rng.uniform(-1., 1., (ncomp, nalm(lmax, mmax)))
        # make a_lm with m==0 real-valued
        res[:, 0:lmax+1].imag = 0.
        return res

    lmax = 256  # band limit
    kmax = 13  # maximum beam azimuthal moment
    nptg = 100
    epsilon = 1e-4  # desired accuracy
    ofactor = 1.5  # oversampling factor: for tuning tradeoff between CPU and memory usage
    nthreads = 0  # use as many threads as available

    # get random sky a_lm
    # the a_lm arrays follow the same conventions as those in healpy

    slm = random_alm(lmax, lmax, 3)
    blm = random_alm(lmax, kmax, 3)

    # produce pointings (i.e. theta, phi, psi triples)
    ptg = np.empty((nptg,3))

    # for this test, we keep (theta, phi, psi) fixed and rotate alpha through 2pi
    ptg[:, 0] = 0.2
    ptg[:, 1] = 0.3
    ptg[:, 2] = 0.5
    alpha = np.arange(nptg)/nptg*2*np.pi

    # We use an idealized HWP Mueller matrix
    mueller = np.identity(4)
    mueller[2,2] = mueller[3,3] = -1
    mueller = rng.random((4,4))-0.5

    fullconv = MuellerConvolver(lmax, kmax, slm, blm, mueller, epsilon,
                                ofactor, nthreads)
    sig = fullconv.signal(ptg, alpha)

    import matplotlib.pyplot as plt
    plt.plot(sig)
    plt.show()


if __name__ == '__main__':
    main()

@ziotom78
Copy link
Member

Hi Martin, it looks great! I tested the code on my computer and everything works as expected.

Your code uses the same memory layout for pointing as the one used by the framework, so it might be added to the repository straight away.

I am adding @paganol to the discussion, so he can comment on this.

@mreineck
Copy link
Collaborator Author

I tested the code on my computer and everything works as expected.

If you have anything that could serve as a unit test, please share it! The only thing I could verify so far is that I get the correct results for a unity Mueller matrix - but that is not really a big achievement...

@mreineck
Copy link
Collaborator Author

Here is an updated version of the code, separated into implementation and the beginnings of a test suite.
mueller_convolver.tar.gz

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants