forked from fishaudio/Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathtranscribe.py
222 lines (194 loc) · 8.18 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import sys
from pathlib import Path
from typing import Any, Optional
from torch.utils.data import Dataset
from tqdm import tqdm
from config import get_path_config
from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT
# faster-whisperは並列処理しても速度が向上しないので、単一モデルでループ処理する
def transcribe_with_faster_whisper(
model: "WhisperModel",
audio_file: Path,
initial_prompt: Optional[str] = None,
language: str = "ja",
num_beams: int = 1,
no_repeat_ngram_size: int = 10,
):
segments, _ = model.transcribe(
str(audio_file),
beam_size=num_beams,
language=language,
initial_prompt=initial_prompt,
no_repeat_ngram_size=no_repeat_ngram_size,
)
texts = [segment.text for segment in segments]
return "".join(texts)
# HF pipelineで進捗表示をするために必要なDatasetクラス
class StrListDataset(Dataset[str]):
def __init__(self, original_list: list[str]) -> None:
self.original_list = original_list
def __len__(self) -> int:
return len(self.original_list)
def __getitem__(self, i: int) -> str:
return self.original_list[i]
# HFのWhisperはファイルリストを与えるとバッチ処理ができて速い
def transcribe_files_with_hf_whisper(
audio_files: list[Path],
model_id: str,
output_file: Path,
initial_prompt: Optional[str] = None,
language: str = "ja",
batch_size: int = 16,
num_beams: int = 1,
no_repeat_ngram_size: int = 10,
device: str = "cuda",
pbar: Optional[tqdm] = None,
) -> list[str]:
import torch
from transformers import WhisperProcessor, pipeline
processor: WhisperProcessor = WhisperProcessor.from_pretrained(model_id)
generate_kwargs: dict[str, Any] = {
"language": language,
"do_sample": False,
"num_beams": num_beams,
"no_repeat_ngram_size": no_repeat_ngram_size,
}
logger.info(f"generate_kwargs: {generate_kwargs}")
pipe = pipeline(
model=model_id,
max_new_tokens=128,
chunk_length_s=30,
batch_size=batch_size,
torch_dtype=torch.float16,
device="cuda",
trust_remote_code=True,
# generate_kwargs=generate_kwargs,
)
if initial_prompt is not None:
prompt_ids: torch.Tensor = pipe.tokenizer.get_prompt_ids(
initial_prompt, return_tensors="pt"
).to(device)
generate_kwargs["prompt_ids"] = prompt_ids
dataset = StrListDataset([str(f) for f in audio_files])
results: list[str] = []
for whisper_result, file in zip(
pipe(dataset, generate_kwargs=generate_kwargs), audio_files
):
text: str = whisper_result["text"]
# なぜかテキストの最初に" {initial_prompt}"が入るので、文字の最初からこれを削除する
# cf. https://github.com/huggingface/transformers/issues/27594
if text.startswith(f" {initial_prompt}"):
text = text[len(f" {initial_prompt}") :]
# with open(output_file, "w", encoding="utf-8") as f:
# for wav_file, text in zip(wav_files, results):
# wav_rel_path = wav_file.relative_to(input_dir)
# f.write(f"{wav_rel_path}|{model_name}|{language_id}|{text}\n")
with open(output_file, "a", encoding="utf-8") as f:
wav_rel_path = file.relative_to(input_dir)
f.write(f"{wav_rel_path}|{model_name}|{language_id}|{text}\n")
results.append(text)
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument(
"--initial_prompt",
type=str,
default="こんにちは。元気、ですかー?ふふっ、私は……ちゃんと元気だよ!",
)
parser.add_argument(
"--language", type=str, default="ja", choices=["ja", "en", "zh"]
)
parser.add_argument("--model", type=str, default="large-v3")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--compute_type", type=str, default="bfloat16")
parser.add_argument("--use_hf_whisper", action="store_true")
parser.add_argument("--hf_repo_id", type=str, default="")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--no_repeat_ngram_size", type=int, default=10)
args = parser.parse_args()
path_config = get_path_config()
dataset_root = path_config.dataset_root
model_name = str(args.model_name)
input_dir = dataset_root / model_name / "raw"
output_file = dataset_root / model_name / "esd.list"
initial_prompt: str = args.initial_prompt
initial_prompt = initial_prompt.strip('"')
language: str = args.language
device: str = args.device
compute_type: str = args.compute_type
batch_size: int = args.batch_size
num_beams: int = args.num_beams
no_repeat_ngram_size: int = args.no_repeat_ngram_size
output_file.parent.mkdir(parents=True, exist_ok=True)
wav_files = [f for f in input_dir.rglob("*.wav") if f.is_file()]
wav_files = sorted(wav_files, key=lambda x: str(x))
if output_file.exists():
logger.warning(f"{output_file} exists, backing up to {output_file}.bak")
backup_path = output_file.with_name(output_file.name + ".bak")
if backup_path.exists():
logger.warning(f"{output_file}.bak exists, deleting...")
backup_path.unlink()
output_file.rename(backup_path)
if language == "ja":
language_id = Languages.JP.value
elif language == "en":
language_id = Languages.EN.value
elif language == "zh":
language_id = Languages.ZH.value
else:
raise ValueError(f"{language} is not supported.")
if not args.use_hf_whisper:
from faster_whisper import WhisperModel
logger.info(
f"Loading faster-whisper model ({args.model}) with compute_type={compute_type}"
)
try:
model = WhisperModel(args.model, device=device, compute_type=compute_type)
except ValueError as e:
logger.warning(f"Failed to load model, so use `auto` compute_type: {e}")
model = WhisperModel(args.model, device=device)
for wav_file in tqdm(wav_files, file=SAFE_STDOUT):
text = transcribe_with_faster_whisper(
model=model,
audio_file=wav_file,
initial_prompt=initial_prompt,
language=language,
num_beams=num_beams,
no_repeat_ngram_size=no_repeat_ngram_size,
)
wav_rel_path = wav_file.relative_to(input_dir)
with open(output_file, "a", encoding="utf-8") as f:
f.write(f"{wav_rel_path}|{model_name}|{language_id}|{text}\n")
else:
if args.hf_repo_id == "":
model_id = f"openai/whisper-{args.model}"
else:
model_id = args.hf_repo_id
logger.info(f"Loading HF Whisper model ({model_id})")
pbar = tqdm(total=len(wav_files), file=SAFE_STDOUT)
results = transcribe_files_with_hf_whisper(
audio_files=wav_files,
model_id=model_id,
initial_prompt=initial_prompt,
language=language,
batch_size=batch_size,
num_beams=num_beams,
no_repeat_ngram_size=no_repeat_ngram_size,
device=device,
pbar=pbar,
output_file=output_file,
)
# with open(output_file, "w", encoding="utf-8") as f:
# for wav_file, text in zip(wav_files, results):
# wav_rel_path = wav_file.relative_to(input_dir)
# f.write(f"{wav_rel_path}|{model_name}|{language_id}|{text}\n")
sys.exit(0)