forked from fishaudio/Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathbert_gen.py
96 lines (80 loc) · 3.4 KB
/
bert_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
from concurrent.futures import ThreadPoolExecutor
import torch
import torch.multiprocessing as mp
from tqdm import tqdm
from config import get_config
from style_bert_vits2.constants import Languages
from style_bert_vits2.logging import logger
from style_bert_vits2.models import commons
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.nlp import cleaned_text_to_sequence, extract_bert_feature
from style_bert_vits2.nlp.japanese import pyopenjtalk_worker
from style_bert_vits2.nlp.japanese.user_dict import update_dict
from style_bert_vits2.utils.stdout_wrapper import SAFE_STDOUT
config = get_config()
# このプロセスからはワーカーを起動して辞書を使いたいので、ここで初期化
pyopenjtalk_worker.initialize_worker()
# dict_data/ 以下の辞書データを pyopenjtalk に適用
update_dict()
def process_line(x: tuple[str, bool]):
line, add_blank = x
device = config.bert_gen_config.device
if config.bert_gen_config.use_multi_device:
rank = mp.current_process()._identity
rank = rank[0] if len(rank) > 0 else 0
if torch.cuda.is_available():
gpu_id = rank % torch.cuda.device_count()
device = f"cuda:{gpu_id}"
else:
device = "cpu"
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
phone = phones.split(" ")
tone = [int(i) for i in tone.split(" ")]
word2ph = [int(i) for i in word2ph.split(" ")]
word2ph = [i for i in word2ph]
phone, tone, language = cleaned_text_to_sequence(
phone, tone, Languages[language_str]
)
if add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_path = wav_path.replace(".WAV", ".wav").replace(".wav", ".bert.pt")
try:
bert = torch.load(bert_path)
assert bert.shape[-1] == len(phone)
except Exception:
bert = extract_bert_feature(text, word2ph, Languages(language_str), device)
assert bert.shape[-1] == len(phone)
torch.save(bert, bert_path)
preprocess_text_config = config.preprocess_text_config
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, default=config.bert_gen_config.config_path
)
args, _ = parser.parse_known_args()
config_path = args.config
hps = HyperParameters.load_from_json(config_path)
lines: list[str] = []
with open(hps.data.training_files, encoding="utf-8") as f:
lines.extend(f.readlines())
with open(hps.data.validation_files, encoding="utf-8") as f:
lines.extend(f.readlines())
add_blank = [hps.data.add_blank] * len(lines)
if len(lines) != 0:
# pyopenjtalkの別ワーカー化により、並列処理でエラーがでる模様なので、一旦シングルスレッド強制にする
num_processes = 1
with ThreadPoolExecutor(max_workers=num_processes) as executor:
_ = list(
tqdm(
executor.map(process_line, zip(lines, add_blank)),
total=len(lines),
file=SAFE_STDOUT,
)
)
logger.info(f"bert.pt is generated! total: {len(lines)} bert.pt files.")