-
Notifications
You must be signed in to change notification settings - Fork 29
/
finetune.py
530 lines (451 loc) · 20.2 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#!/usr/bin/env python
# coding: utf-8
import os
import argparse
from pprint import pprint
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.data.sampler import SubsetRandomSampler
from torchvision import datasets, transforms, models
import PIL
import numpy as np
from tqdm import tqdm
from sklearn.metrics import confusion_matrix, precision_recall_curve
from datasets.dtd import DTD
from datasets.pets import Pets
from datasets.cars import Cars
from datasets.food import Food
from datasets.sun397 import SUN397
from datasets.voc2007 import VOC2007
from datasets.flowers import Flowers
from datasets.aircraft import Aircraft
from datasets.caltech101 import Caltech101
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def count_acc(pred, label, metric):
if metric == 'accuracy':
return pred.eq(label.view_as(pred)).to(torch.float32).mean().item()
elif metric == 'mean per-class accuracy':
# get the confusion matrix
cm = confusion_matrix(label.cpu(), pred.detach().cpu())
cm = cm.diagonal() / cm.sum(axis=1)
return cm.mean()
elif metric == 'mAP':
aps = []
for cls in range(label.size(1)):
ap = voc_eval_cls(label[:, cls].cpu(), pred[:, cls].detach().cpu())
aps.append(ap)
mAP = np.mean(aps)
return mAP
def voc_ap(rec, prec):
"""
average precision calculations for PASCAL VOC 2007 metric, 11-recall-point based AP
[precision integrated to recall]
:param rec: recall
:param prec: precision
:return: average precision
"""
ap = 0.
for t in np.linspace(0, 1, 11):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap += p / 11.
return ap
def voc_eval_cls(y_true, y_pred):
# get precision and recall
prec, rec, _ = precision_recall_curve(y_true, y_pred)
# compute average precision
ap = voc_ap(rec, prec)
return ap
# Testing classes and functions
class FinetuneModel(nn.Module):
def __init__(self, model, num_classes, steps, metric, device, feature_dim):
super().__init__()
self.num_classes = num_classes
self.steps = steps
self.metric = metric
self.device = device
self.model = nn.Sequential(model, nn.Linear(feature_dim, num_classes))
self.model = self.model.to(self.device)
self.model.train()
self.criterion = nn.BCEWithLogitsLoss() if self.metric == 'mAP' else nn.CrossEntropyLoss()
def tune(self, train_loader, test_loader, lr, wd):
# set up optimizer
optimizer = optim.SGD(self.model.parameters(), lr=lr, momentum=0.9, nesterov=True, weight_decay=wd)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.steps)
print(optimizer)
# train the model with labels on the validation data
self.model.train()
train_loss = AverageMeter('loss', ':.4e')
train_acc = AverageMeter('acc', ':6.2f')
step = 0
pbar = tqdm(range(self.steps), desc='Training')
running = True
while running:
for data, targets in train_loader:
if step >= self.steps:
running = False
break
data, targets = data.to(self.device), targets.to(self.device)
if self.metric == 'mAP':
targets = targets.to(torch.float32)
optimizer.zero_grad()
output = self.model(data)
loss = self.criterion(output, targets)
if self.metric == 'mAP':
output = (output >= 0).to(torch.float32)
else:
output = output.argmax(dim=1)
# during training we can always track traditional accuracy, it'll be easier
acc = 100. * count_acc(output, targets, "accuracy")
loss.backward()
optimizer.step()
train_loss.update(loss.item(), data.size(0))
train_acc.update(acc, data.size(0))
pbar.update(1)
pbar.set_postfix(loss=train_loss, acc=train_acc, lr=f"{scheduler.optimizer.param_groups[0]['lr']:.6f}")
scheduler.step()
step += 1
pbar.close()
val_loss, val_acc = self.test_classifier(test_loader)
return val_acc
def test_classifier(self, data_loader):
self.model.eval()
test_loss, test_acc = 0, 0
num_data_points = 0
preds, labels = [], []
with torch.no_grad():
for i, (data, targets) in enumerate(tqdm(data_loader, desc=' Testing')):
num_data_points += data.size(0)
data, targets = data.to(self.device), targets.to(self.device)
if self.metric == 'mAP':
targets = targets.to(torch.float32)
output = self.model(data)
tl = self.criterion(output, targets).item()
tl *= data.size(0)
test_loss += tl
if self.metric in 'accuracy':
ta = 100. * count_acc(output.argmax(dim=1), targets, self.metric)
ta *= data.size(0)
test_acc += ta
elif self.metric == 'mean per-class accuracy':
pred = output.argmax(dim=1).detach()
preds.append(pred)
labels.append(targets)
elif self.metric == 'mAP':
#pred = (output >= 0).to(torch.float32)
pred = output.detach()
preds.append(pred)
labels.append(targets)
if self.metric == 'accuracy':
test_acc /= num_data_points
elif self.metric == 'mean per-class accuracy':
preds = torch.cat(preds)
labels = torch.cat(labels)
test_acc = 100. * count_acc(preds, labels, self.metric)
elif self.metric == 'mAP':
preds = torch.cat(preds)
labels = torch.cat(labels)
print(preds, labels)
test_acc = 100. * count_acc(preds, labels, self.metric)
test_loss /= num_data_points
self.model.train()
return test_loss, test_acc
class FinetuneTester():
def __init__(self, model_name, train_loader, val_loader, trainval_loader, test_loader,
metric, device, num_classes, feature_dim=2048, grid=None, steps=5000):
self.model_name = model_name
self.train_loader = train_loader
self.val_loader = val_loader
self.trainval_loader = trainval_loader
self.test_loader = test_loader
self.metric = metric
self.device = device
self.num_classes = num_classes
self.feature_dim = feature_dim
self.grid = grid
self.steps = steps
self.best_params = {}
def validate(self):
best_score = 0
for i, (lr, wd) in enumerate(grid):
print(f'Run {i}')
print(f'lr={lr}, wd={wd}')
# load pretrained model
self.model = ResNetBackbone(self.model_name)
self.model = self.model.to(self.device)
self.finetuner = FinetuneModel(self.model, self.num_classes, self.steps,
self.metric, self.device, self.feature_dim)
val_acc = self.finetuner.tune(self.train_loader, self.val_loader, lr, wd)
print(f'Finetuned val accuracy {val_acc:.2f}%')
if val_acc > best_score:
best_score = val_acc
self.best_params['lr'] = lr
self.best_params['wd'] = wd
print(f"New best {self.best_params}")
def evaluate(self):
print(f"Best params {self.best_params}")
# load pretrained model
self.model = ResNetBackbone(self.model_name)
self.model = self.model.to(self.device)
self.finetuner = FinetuneModel(self.model, self.num_classes, self.steps,
self.metric, self.device, self.feature_dim)
test_score = self.finetuner.tune(self.trainval_loader, self.test_loader, self.best_params['lr'], self.best_params['wd'])
print(f'Finetuned test accuracy {test_score:.2f}%')
return test_score
class ResNetBackbone(nn.Module):
def __init__(self, model_name):
super().__init__()
self.model_name = model_name
self.model = models.resnet50(pretrained=False)
del self.model.fc
state_dict = torch.load(os.path.join('models', self.model_name + '.pth'))
self.model.load_state_dict(state_dict)
self.model.train()
print("num parameters:", sum(p.numel() for p in self.model.parameters()))
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
return x
# Data classes and functions
def get_dataset(dset, root, split, transform):
try:
return dset(root, train=(split == 'train'), transform=transform, download=True)
except:
return dset(root, split=split, transform=transform, download=True)
def get_train_valid_loader(dset,
data_dir,
normalise_dict,
batch_size,
image_size,
random_seed,
valid_size=0.2,
shuffle=True,
num_workers=1,
pin_memory=True,
data_augmentation=True):
"""
Utility function for loading and returning train and valid
multi-process iterators over the CIFAR-10 dataset. A sample
9x9 grid of the images can be optionally displayed.
If using CUDA, num_workers should be set to 1 and pin_memory to True.
Params
------
- data_dir: path directory to the dataset.
- dset: dataset class to load
- normalise_dict: dictionary containing the normalisation parameters of the training set
- batch_size: how many samples per batch to load.
- image_size: size of images after transforms
- random_seed: fix seed for reproducibility.
- valid_size: percentage split of the training set used for
the validation set. Should be a float in the range [0, 1].
- shuffle: whether to shuffle the train/validation indices.
- num_workers: number of subprocesses to use when loading the dataset.
- pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.
Returns
-------
- train_loader: training set iterator.
- valid_loader: validation set iterator.
"""
error_msg = "[!] valid_size should be in the range [0, 1]."
assert ((valid_size >= 0) and (valid_size <= 1)), error_msg
normalize = transforms.Normalize(**normalise_dict)
print("Train normaliser:", normalize)
# define transforms with augmentations
transform_aug = transforms.Compose([
transforms.RandomResizedCrop(image_size, interpolation=PIL.Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
# define transform without augmentations
transform_no_aug = transforms.Compose([
transforms.Resize(image_size, interpolation=PIL.Image.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
])
if not data_augmentation:
transform_aug = transform_no_aug
print("Train transform:", transform_aug)
print("Val transform:", transform_no_aug)
print("Trainval transform:", transform_aug)
if dset in [Aircraft, DTD, Flowers, VOC2007]:
# if we have a predefined validation set
train_dataset = get_dataset(dset, data_dir, 'train', transform_aug)
valid_dataset_with_aug = get_dataset(dset, data_dir, 'val', transform_aug)
trainval_dataset = ConcatDataset([train_dataset, valid_dataset_with_aug])
valid_dataset = get_dataset(dset, data_dir, 'val', transform_no_aug)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory,
)
valid_loader = DataLoader(
valid_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory,
)
trainval_loader = DataLoader(
trainval_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory,
)
else:
# otherwise we select a random subset of the train set to form the validation set
dataset = get_dataset(dset, data_dir, 'train', transform_aug)
valid_dataset = get_dataset(dset, data_dir, 'train', transform_no_aug)
num_train = len(dataset)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
if shuffle:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = DataLoader(
dataset, batch_size=batch_size, sampler=train_sampler,
num_workers=num_workers, pin_memory=pin_memory,
)
valid_loader = DataLoader(
valid_dataset, batch_size=batch_size, sampler=valid_sampler,
num_workers=num_workers, pin_memory=pin_memory,
)
trainval_loader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory,
)
return train_loader, valid_loader, trainval_loader
def get_test_loader(dset,
data_dir,
normalise_dict,
batch_size,
image_size,
shuffle=False,
num_workers=1,
pin_memory=True):
"""
Utility function for loading and returning a multi-process
test iterator over the CIFAR-10 dataset.
If using CUDA, num_workers should be set to 1 and pin_memory to True.
Params
------
- data_dir: path directory to the dataset.
- dset: dataset class to load
- normalise_dict: dictionary containing the normalisation parameters of the training set
- batch_size: how many samples per batch to load.
- image_size: size of images after transforms
- shuffle: whether to shuffle the dataset after every epoch.
- num_workers: number of subprocesses to use when loading the dataset.
- pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.
Returns
-------
- data_loader: test set iterator.
"""
normalize = transforms.Normalize(**normalise_dict)
print("Test normaliser:", normalize)
# define transform
transform = transforms.Compose([
transforms.Resize(image_size, interpolation=PIL.Image.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
normalize,
])
print("Test transform:", transform)
dataset = get_dataset(dset, data_dir, 'test', transform)
data_loader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory,
)
return data_loader
def prepare_data(dset, data_dir, batch_size, image_size, normalisation, num_workers, data_augmentation):
print(f'Loading {dset} from {data_dir}, with batch size={batch_size}, image size={image_size}, norm={normalisation}')
if normalisation:
normalise_dict = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}
else:
normalise_dict = {'mean': [0.0, 0.0, 0.0], 'std': [1.0, 1.0, 1.0]}
train_loader, val_loader, trainval_loader = get_train_valid_loader(dset, data_dir, normalise_dict,
batch_size, image_size, random_seed=0, num_workers=num_workers,
pin_memory=False, data_augmentation=data_augmentation)
test_loader = get_test_loader(dset, data_dir, normalise_dict, batch_size, image_size, num_workers=num_workers,
pin_memory=False)
return train_loader, val_loader, trainval_loader, test_loader
# name: {class, root, num_classes, metric}
FINETUNE_DATASETS = {
'aircraft': [Aircraft, '../data/Aircraft', 100, 'mean per-class accuracy'],
'caltech101': [Caltech101, '../data/Caltech101', 102, 'mean per-class accuracy'],
'cars': [Cars, '../data/Cars', 196, 'accuracy'],
'cifar10': [datasets.CIFAR10, '../data/CIFAR10', 10, 'accuracy'],
'cifar100': [datasets.CIFAR100, '../data/CIFAR100', 100, 'accuracy'],
'dtd': [DTD, '../data/DTD', 47, 'accuracy'],
'flowers': [Flowers, '../data/Flowers', 102, 'mean per-class accuracy'],
'food': [Food, '../data/Food', 101, 'accuracy'],
'pets': [Pets, '../data/Pets', 37, 'mean per-class accuracy'],
'sun397': [SUN397, '../data/SUN397', 397, 'accuracy'],
'voc2007': [VOC2007, '../data/VOC2007', 20, 'mAP'],
}
# Main code
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate pretrained self-supervised model via finetuning.')
parser.add_argument('-m', '--model', type=str, default='deepcluster-v2', help='name of the pretrained model to load and evaluate')
parser.add_argument('-d', '--dataset', type=str, default='cifar10', help='name of the dataset to evaluate on')
parser.add_argument('-b', '--batch-size', type=int, default=64, help='the size of the mini-batches when inferring features')
parser.add_argument('-i', '--image-size', type=int, default=224, help='the size of the input images')
parser.add_argument('-w', '--workers', type=int, default=8, help='the number of workers for loading the data')
parser.add_argument('-g', '--grid-size', type=int, default=4, help='the number of learning rate values in the search grid')
parser.add_argument('--steps', type=int, default=5000, help='the number of finetuning steps')
parser.add_argument('--no-da', action='store_true', default=False, help='disables data augmentation during training')
parser.add_argument('-n', '--no-norm', action='store_true', default=False,
help='whether to turn off data normalisation (based on ImageNet values)')
parser.add_argument('--device', type=str, default='cuda', help='CUDA or CPU training (cuda | cpu)')
args = parser.parse_args()
args.norm = not args.no_norm
args.da = not args.no_da
del args.no_norm
del args.no_da
pprint(args)
# load dataset
dset, data_dir, num_classes, metric = FINETUNE_DATASETS[args.dataset]
train_loader, val_loader, trainval_loader, test_loader = prepare_data(
dset, data_dir, args.batch_size, args.image_size, normalisation=args.norm, num_workers=args.workers,
data_augmentation=args.da)
# set up learning rate and weight decay ranges
lr = torch.logspace(-4, -1, args.grid_size).flip(dims=(0,))
wd = torch.cat([torch.zeros(1), torch.logspace(-6, -3, args.grid_size)])
grid = [(l.item(), (w / l).item()) for l in lr for w in wd]
# evaluate model on dataset by finetuning
tester = FinetuneTester(args.model, train_loader, val_loader, trainval_loader, test_loader,
metric, args.device, num_classes, grid=grid, steps=args.steps)
# tune hyperparameters
tester.validate()
# use best hyperparameters to finally evaluate the model
test_score = tester.evaluate()