-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_multimodal.py
751 lines (639 loc) · 34.9 KB
/
main_multimodal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# import
import os
import argparse
import time
import math
import datetime
import glob
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import datasets as dset
import models as net
from utils import get_time, logging, get_lrs, save_checkpoint, load_checkpoint
from utils import get_grid_image, get_image_from_values, get_plot
from utils import batch_to_device, merge_two_batch
from utils import sample_queries, sample_hand_queries, sample_random_queries, sample_random_hand_queries
from utils import get_visualization_image_data, get_visualization_haptic_data, get_combined_visualization_image_data
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='haptix-shepard_metzler_5_parts', help='dataset')
# net architecture
parser.add_argument('--model', default='gqn',
choices=['multimodal-gqn-v1', 'multimodal-gqn-v2', 'multimodal-gqn-v3', 'multimodal-gqn-v4', 'multimodal-ml-gqn-v1', 'multimodal-ml-gqn-v2',
'multimodal-cgqn-v1', 'multimodal-cgqn-v2', 'multimodal-cgqn-v3', 'multimodal-cgqn-v4', 'multimodal-ml-cgqn-v1', 'multimodal-ml-cgqn-v2',
'poe-multimodal-cgqn-v1', 'poe-multimodal-cgqn-v2', 'poe-multimodal-cgqn-v3', 'poe-multimodal-cgqn-v4', 'poe-multimodal-ml-cgqn-v1', 'poe-multimodal-ml-cgqn-v2',
'apoe-multimodal-cgqn-v1', 'apoe-multimodal-cgqn-v2', 'apoe-multimodal-cgqn-v3', 'apoe-multimodal-cgqn-v4', 'apoe-multimodal-ml-cgqn-v1', 'apoe-multimodal-ml-cgqn-v2',
'conv-apoe-multimodal-cgqn-v1', 'conv-apoe-multimodal-cgqn-v2', 'conv-apoe-multimodal-cgqn-v3', 'conv-apoe-multimodal-cgqn-v4', 'conv-apoe-multimodal-ml-cgqn-v1', 'conv-apoe-multimodal-ml-cgqn-v2',
'cond-conv-apoe-multimodal-cgqn-v1', 'cond-conv-apoe-multimodal-cgqn-v2', 'cond-conv-apoe-multimodal-cgqn-v3', 'cond-conv-apoe-multimodal-cgqn-v4', 'cond-conv-apoe-multimodal-ml-cgqn-v1', 'cond-conv-apoe-multimodal-ml-cgqn-v2',
],
help='model')
# type of data
parser.add_argument('--img-nheight', type=int, default=64,
help='the height / width of the input to network')
parser.add_argument('--img-nchannels', type=int, default=3,
help='number of channels in input')
parser.add_argument('--hpt-nheight', type=int, default=1,
help='the height / width of the input to network')
parser.add_argument('--hpt-nchannels', type=int, default=132,
help='number of channels in input')
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0, # 0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=10,
help='upper epoch limit')
parser.add_argument('--start-epoch', type=int, default=1,
help='start epoch')
parser.add_argument('--start-batch-idx', type=int, default=0,
help='start batch-idx')
# training
parser.add_argument('--train-batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 20)')
parser.add_argument('--eval-batch-size', type=int, default=128, metavar='N',
help='input batch size for test (default: 10)')
parser.add_argument('--optimizer', default='adam',
choices=['sgd', 'adam', 'adam-0.5'],
help='optimization methods: sgd | adam')
add_mod_parser = parser.add_mutually_exclusive_group(required=False)
add_mod_parser.add_argument('--add-mod', dest='add_mod', action='store_true', help='add module-specific losses')
add_mod_parser.add_argument('--no-add-mod', dest='add_mod', action='store_false', help='add module-specific losses')
parser.set_defaults(add_mod=False)
add_opposite_parser = parser.add_mutually_exclusive_group(required=False)
add_opposite_parser.add_argument('--add-opposite', dest='add_opposite', action='store_true', help='flag for adding batches in which target and context are swapped during training')
add_opposite_parser.add_argument('--no-add-opposite', dest='add_opposite', action='store_false', help='flag for adding batches in which target and context are swapped during training')
parser.set_defaults(add_opposite=False)
# annealing
parser.add_argument('--beta-init', type=float, default=1.0,
help='initial beta value for beta annealing')
parser.add_argument('--beta-fin', type=float, default=1.0,
help='final beta value for beta annealing')
parser.add_argument('--beta-annealing', type=float, default=100000,
help='interval to annealing beta')
parser.add_argument('--std-init', type=float, default=math.sqrt(2.0),
help='initial std value for std annealing')
parser.add_argument('--std-fin', type=float, default=math.sqrt(0.5),
help='final std value for std annealing')
parser.add_argument('--std-annealing', type=float, default=None, #100000,
help='interval to annealing std')
# log
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--log-interval', type=int, default=10, help='report interval')
parser.add_argument('--vis-interval', type=int, default=5000,
help='visualization interval')
# save
parser.add_argument('--resume', dest='resume', action='store_true', default=True,
help='flag to resume the experiments')
parser.add_argument('--no-resume', dest='resume', action='store_false', default=True,
help='flag to resume the experiments')
parser.add_argument('--cache', default=None, help='path to cache')
parser.add_argument('--experiment', default=None, help='name of experiment')
parser.add_argument('--exp-num', type=int, default=None,
help='experiment number')
# parse arguments
opt = parser.parse_args()
# preprocess arguments
opt.cuda = not opt.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if opt.cuda else "cpu")
opt.best_val1_loss = None
# generate cache folder
if opt.cache is None:
opt.cache = 'experiments'
if opt.experiment is None:
opt.experiment = '{}-{}-{}-addopp{}-exp{}'.format(
opt.dataset,
opt.model,
opt.optimizer,
1 if opt.add_opposite else 0,
opt.exp_num if opt.exp_num else 0,
)
opt.path = os.path.join(opt.cache, opt.experiment)
if opt.resume:
listing = glob.glob(opt.path+'-2*')
if len(listing) == 0:
opt.path = '{}-{}'.format(opt.path, get_time())
else:
path_sorted = sorted(listing, key=lambda x: datetime.datetime.strptime(x, opt.path+'-%Y-%m-%d-%H:%M:%S.%f'))
opt.path = path_sorted[-1]
pass
else:
opt.path = '{}-{}'.format(opt.path, get_time())
os.system('mkdir -p {}'.format(opt.path))
# print args
logging(str(opt), path=opt.path)
# init tensorboard
writer = SummaryWriter(opt.path)
# init dataset
train_loader, val1_loader, val2_loader, test_loader, dataset_info = dset.get_dataset(opt.dataset, opt.train_batch_size, opt.eval_batch_size, opt.cuda)
num_modalities = dataset_info['num_modalities']
if val2_loader is not None:
run_val2 = True
else:
run_val2 = False
# init model
if opt.model == 'multimodal-cgqn-v1':
model = net.MultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'multimodal-cgqn-v2':
model = net.MultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'multimodal-cgqn-v3':
model = net.MultimodalCGQN_v3(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'multimodal-cgqn-v4':
model = net.MultimodalCGQN_v4(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'multimodal-ml-cgqn-v1':
model = net.MultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'multimodal-ml-cgqn-v2':
model = net.MultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'poe-multimodal-cgqn-v1':
model = net.PoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'poe-multimodal-cgqn-v2':
model = net.PoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'poe-multimodal-cgqn-v3':
model = net.PoEMultimodalCGQN_v3(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'poe-multimodal-cgqn-v4':
model = net.PoEMultimodalCGQN_v4(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'poe-multimodal-ml-cgqn-v1':
model = net.PoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'poe-multimodal-ml-cgqn-v2':
model = net.PoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'apoe-multimodal-cgqn-v1':
model = net.APoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'apoe-multimodal-cgqn-v2':
model = net.APoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'apoe-multimodal-cgqn-v3':
model = net.APoEMultimodalCGQN_v3(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'apoe-multimodal-cgqn-v4':
model = net.APoEMultimodalCGQN_v4(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'apoe-multimodal-ml-cgqn-v1':
model = net.APoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'apoe-multimodal-ml-cgqn-v2':
model = net.APoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'conv-apoe-multimodal-cgqn-v1':
model = net.ConvAPoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'conv-apoe-multimodal-cgqn-v2':
model = net.ConvAPoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'conv-apoe-multimodal-cgqn-v3':
model = net.ConvAPoEMultimodalCGQN_v3(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'conv-apoe-multimodal-cgqn-v4':
model = net.ConvAPoEMultimodalCGQN_v4(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'conv-apoe-multimodal-ml-cgqn-v1':
model = net.ConvAPoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'conv-apoe-multimodal-ml-cgqn-v2':
model = net.ConvAPoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-cgqn-v1':
model = net.CondConvAPoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-cgqn-v2':
model = net.CondConvAPoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-cgqn-v3':
model = net.CondConvAPoEMultimodalCGQN_v3(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-cgqn-v4':
model = net.CondConvAPoEMultimodalCGQN_v4(dims=dataset_info['dims'], num_layers=1).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-ml-cgqn-v1':
model = net.CondConvAPoEMultimodalCGQN_v1(dims=dataset_info['dims'], num_layers=2).to(device)
elif opt.model == 'cond-conv-apoe-multimodal-ml-cgqn-v2':
model = net.CondConvAPoEMultimodalCGQN_v2(dims=dataset_info['dims'], num_layers=2).to(device)
else:
raise NotImplementedError('unknown model: {}'.format(opt.model))
logging(str(model), path=opt.path)
# init optimizer
if opt.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=opt.lr)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=1./4.0, patience=0, verbose=True)
elif opt.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
scheduler = None
elif opt.optimizer == 'adam-0.5':
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.5, 0.999))
scheduler = None
else:
raise NotImplementedError('unknown optimizer: {}'.format(opt.optimizer))
# resume
load_checkpoint(model, optimizer, opt)
# msc
def get_batch_size(eval_target):
mod_batch_sizes = []
for i in range(num_modalities):
mod_batch_sizes += [sum([target[i*2].size(0) for target in eval_target if target[i*2] is not None])]
batch_size = sum(mod_batch_sizes)
return batch_size, mod_batch_sizes
def get_visualization_queries_with_predefined_dist(num_episodes, device):
# generate image with shuffled queries and random queries
img_queries = sample_queries(nrow=4, ncol=8, radius=1.0, swap_pitch_yaw=False, use_normalize_angle=True, flip_yaw=False).to(device)
num_img_queries = img_queries.size(0)
img_queries = [img_queries for i in range(num_episodes)]
return img_queries, num_img_queries
def get_visualization_queries_from_data(idx, eval_target, num_episodes, num_queries=32):
# generate image with shuffled queries and random queries
#hpt_queries = torch.cat([eval_target[i][idx*2+1] for i in range(num_episodes) if eval_target[i][idx*2+1] is not None], dim=0)
hpt_queries = sample_hand_queries(nrow=4, ncol=8).to(device)
num_hpt_queries = num_queries #32 #dataset_info['nviews'] # 15
set_indices = [np.random.permutation(num_hpt_queries)[:num_hpt_queries] % hpt_queries.size(0) for i in range(num_episodes)]
shuffled_hpt_queries = [torch.cat([hpt_queries[i:i+1] for i in indices], dim=0) for indices in set_indices]
return shuffled_hpt_queries, num_hpt_queries
# define evaluate
def running_evaluate_for_val1(model):
# set global variable
global runinng_val1_data_iter
# init
model.eval()
with torch.no_grad():
# get one minibatch
try:
_, eval_context, eval_target = runinng_val1_data_iter.next()
except:
runinng_val1_data_iter = iter(val1_loader)
_, eval_context, eval_target = runinng_val1_data_iter.next()
# init batch
eval_context = batch_to_device(eval_context, device)
eval_target = batch_to_device(eval_target, device)
num_episodes = len(eval_context)
batch_size, mod_batch_sizes = get_batch_size(eval_target)
# forward
_, _, loss, info = model(eval_context, eval_target)
# unpack info
loss_likelihood, loss_kl = info['likelihood'], info['kl']
loss_mod_likelihoods = info['mod_likelihoods']
# add to total_loss
total_loss = loss.item() / batch_size * num_modalities
return total_loss
if run_val2:
def running_evaluate_for_val2(model):
# set global variable
global runinng_val2_data_iter
# init
model.eval()
with torch.no_grad():
# get one minibatch
try:
_, eval_context, eval_target = runinng_val2_data_iter.next()
except:
runinng_val2_data_iter = iter(val2_loader)
_, eval_context, eval_target = runinng_val2_data_iter.next()
# init batch
eval_context = batch_to_device(eval_context, device)
eval_target = batch_to_device(eval_target, device)
num_episodes = len(eval_context)
batch_size, mod_batch_sizes = get_batch_size(eval_target)
# forward
_, _, loss, info = model(eval_context, eval_target)
# unpack info
loss_likelihood, loss_kl = info['likelihood'], info['kl']
loss_mod_likelihoods = info['mod_likelihoods']
# add to total_loss
total_loss = loss.item() / batch_size * num_modalities
return total_loss
def evaluate(eval_loader, test=False):
# Turn on evaluation mode which disables dropout.
name='test' if test else 'val'
model.eval()
total_loss = 0.
total_batch_size = 0
total_mod_likelihoods = [0]*num_modalities
total_mod_batch_sizes = [0]*num_modalities
latents = []
with torch.no_grad():
for batch_idx, (_, eval_context, eval_target) in enumerate(eval_loader):
# init batch
eval_context = batch_to_device(eval_context, device)
eval_target = batch_to_device(eval_target, device)
num_episodes = len(eval_context)
batch_size, mod_batch_sizes = get_batch_size(eval_target)
# forward
outputs, latent, loss, info = model(eval_context, eval_target)
# unpack info
loss_likelihood, loss_kl = info['likelihood'], info['kl']
loss_mod_likelihoods = info['mod_likelihoods']
# add to latents
latents += [latent] if latent is not None else []
# add to total_loss
total_loss += loss.item() * num_modalities #/ batch_size * num_episodes
total_batch_size += batch_size
for i in range(num_modalities):
#total_mod_likelihoods[i] += loss_mod_likelihoods[i].item() / mod_batch_sizes[i] * num_episodes if loss_mod_likelihoods[i] is not None else 0
total_mod_likelihoods[i] += loss_mod_likelihoods[i].item() if loss_mod_likelihoods[i] is not None else 0
total_mod_batch_sizes[i] += mod_batch_sizes[i]
# visualize prediction
if batch_idx + 1 == len(eval_loader):
# init queries
mod_queries, num_mod_queries = [], []
for idx, (_, _, _, _, mtype) in enumerate(dataset_info['dims']):
# get queries
if mtype == 'image':
# image queries
_mod_queries, _num_mod_queries = get_visualization_queries_with_predefined_dist(num_episodes, device)
elif mtype == 'haptic':
# haptic queries
_mod_queries, _num_mod_queries = get_visualization_queries_from_data(idx, eval_target, num_episodes)
# append to list
mod_queries += [_mod_queries]
num_mod_queries += [_num_mod_queries]
# generate
gens, latent = model.generate(eval_context, tuple(mod_queries))
# visualize
img_gens = []
for idx, (nchannels, nheight, nwidth, _, mtype) in enumerate(dataset_info['dims']):
# get output and gen
output = outputs[idx]
gen = gens[idx]
_num_mod_queries = num_mod_queries[idx]
# visualize
if mtype == 'image':
# visualize predictions (image)
xs = get_visualization_image_data(idx, nchannels, nheight, nwidth, device, eval_context, eval_target, output, gen, _num_mod_queries, dataset_info['nviews'])
for i, x in enumerate(xs):
writer.add_image('{}/m{}-cond-target-recon-gensh-genrd-b{}-i{}/img'.format(name, idx, batch_idx, i), x, epoch)
# temporary
img_gens += [gen]
num_img_queries = _num_mod_queries
elif mtype == 'haptic':
# visualize predictions (haptic)
xs = get_visualization_haptic_data(idx, nchannels, nheight, device, eval_context, eval_target, output, gen, _num_mod_queries)
for i, x in enumerate(xs):
writer.add_image('{}/m{}-cond-target-recon-gensh-genrd-b{}-i{}/hpt'.format(name, idx, batch_idx, i), x, epoch)
else:
raise NotImplementedError
# visualize combined image
xs = get_combined_visualization_image_data(opt.dataset, dataset_info['dims'], img_gens, num_img_queries, min(4, len(eval_context)))
for i, x in enumerate(xs):
writer.add_image('{}/cond-target-recon-gensh-genrd-b{}-i{}/img'.format(name, batch_idx, i), x, epoch)
return total_loss / total_batch_size
# define train
def train(train_loader, model, optimizer, epoch, start_batch_idx=0):
# init
start_time = time.time()
model.train()
total_loss = 0.
total_likelihood = 0.
total_mod_likelihoods = [0.]*num_modalities
total_kl = 0.
total_batch_size = 0
total_mod_batch_sizes = [0]*num_modalities
for _batch_idx, (_, train_context, train_target) in enumerate(train_loader):
# init batch_idx
batch_idx = _batch_idx + start_batch_idx
i_episode = (epoch-1)*len(train_loader) + batch_idx
# init beta and std
beta = opt.beta_init + (opt.beta_fin - opt.beta_init) / float(opt.beta_annealing) * float(min(opt.beta_annealing, i_episode))
std = opt.std_init + (opt.std_fin - opt.std_init) / float(opt.std_annealing) * float(min(opt.std_annealing, i_episode)) if opt.std_annealing is not None else None
# init batch
train_context = batch_to_device(train_context, device)
train_target = batch_to_device(train_target, device)
# add additional datasets
_train_context = []
_train_target = []
if opt.add_opposite:
_train_context += train_target
_train_target += train_context
train_context += _train_context
train_target += _train_target
# init numbers
num_episodes = len(train_context)
batch_size, mod_batch_sizes = get_batch_size(train_target)
# init grad
model.zero_grad()
''' ELBO '''
# forward (joint observation)
outputs, latent, loss, info = \
model(train_context, train_target, beta=beta) if opt.std_annealing is None \
else model(train_context, train_target, beta=beta, std=std)
# backward (joint observation)
loss.backward()
# forward (module-specific observation)
if opt.add_mod:
for m in range(num_modalities):
# check target is not empty
is_not_empty = True in [train_target[i][m*2] is not None for i in range(num_episodes)]
if is_not_empty:
# fetch module-specific data
mod_train_context = []
mod_train_target = []
for i in range(num_episodes):
if train_target[i][m*2] is not None:
_mod_train_context = [None, None]*num_modalities
_mod_train_context[m*2] = train_context[i][m*2]
_mod_train_context[m*2+1] = train_context[i][m*2+1]
_mod_train_context = tuple(_mod_train_context)
mod_train_context += [_mod_train_context]
_mod_train_target = [None, None]*num_modalities
_mod_train_target[m*2] = train_target[i][m*2]
_mod_train_target[m*2+1] = train_target[i][m*2+1]
_mod_train_target = tuple(_mod_train_target)
mod_train_target += [_mod_train_target]
# forward (module-specific observation)
_, _, mod_loss, _ = \
model(mod_train_context, mod_train_target, beta=beta) if opt.std_annealing is None \
else model(mod_train_context, mod_train_target, beta=beta, std=std)
# backward (module-specific observation)
if mod_loss is not None:
mod_loss.backward()
# unpack info
loss_likelihood, loss_kl = info['likelihood'], info['kl']
loss_mod_likelihoods = info['mod_likelihoods']
# `clip_grad_norm` helps prevent the exploding gradient problem in continuous data with gaussian likelihood
if opt.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.clip)
# update
optimizer.step()
# add to total loss
cur_loss = loss.item()
cur_likelihood = loss_likelihood.item()
cur_kl = loss_kl.item()
cur_mod_likelihoods = [loss_mod_likelihood.item() if loss_mod_likelihood is not None else None for loss_mod_likelihood in loss_mod_likelihoods]
total_loss += cur_loss * num_modalities #/ batch_size * num_episodes
total_likelihood += cur_likelihood * num_modalities #/ batch_size * num_episodes
total_kl += cur_kl * num_modalities #/ batch_size * num_episodes
total_batch_size += batch_size
for i in range(num_modalities):
#total_mod_likelihoods[i] += cur_mod_likelihoods[i] / mod_batch_sizes[i] * num_episodes if cur_mod_likelihoods[i] is not None else 0
total_mod_likelihoods[i] += cur_mod_likelihoods[i] if cur_mod_likelihoods[i] is not None else 0
total_mod_batch_sizes[i] += mod_batch_sizes[i]
# print
if (batch_idx+1) % opt.log_interval == 0:
# plot running val
val1_loss = running_evaluate_for_val1(model)
val2_loss = running_evaluate_for_val2(model) if run_val2 else -1.
model.train()
# set log info
elapsed = time.time() - start_time
lr_min, lr_max = get_lrs(optimizer)
# print
logging('| epoch {:3d} | {:5d}/{:5d} '
'| lr_min {:02.4f} | lr_max {:02.4f} | ms/step {:5.2f} '
'| beta {:02.4f} '
'| loss {:5.8f} | lk+kl {:5.8f} | likelihood {:5.8f} | kl {:5.8f} '
'{}'
'| val1 loss (lk+kl) {:5.8f} '
'| val2 loss (lk+kl) {:5.8f} '
.format(
epoch,
batch_idx+1, len(train_loader),
lr_min, lr_max, elapsed * 1000 / opt.log_interval,
beta,
cur_loss / batch_size * num_modalities,
(cur_likelihood + cur_kl) / batch_size * num_modalities,
cur_likelihood / batch_size * num_modalities,
cur_kl / batch_size * num_modalities,
''.join(['| m{}_{}_lk {} '.format(
i,
mtype,
'{:5.8f}'.format(cur_mod_likelihoods[i] / mod_batch_sizes[i]) if cur_mod_likelihoods[i] is not None else '-.--------',
) for i, (_, _, _, _, mtype) in enumerate(dataset_info['dims'])]),
val1_loss,
val2_loss,
),
path=opt.path)
# write to tensorboard
writer.add_scalar('train/loss/step', cur_loss / batch_size * num_modalities, i_episode)
writer.add_scalar('train/lk+kl/step', (cur_likelihood + cur_kl) / batch_size * num_modalities, i_episode)
writer.add_scalar('train/likelihood/step', cur_likelihood / batch_size * num_modalities, i_episode)
for i, (_, _, _, _, mtype) in enumerate(dataset_info['dims']):
if cur_mod_likelihoods[i] is not None:
writer.add_scalar('train/m{}_{}_lk/step'.format(i, 'img' if mtype == 'image' else 'hpt'), cur_mod_likelihoods[i] / mod_batch_sizes[i], i_episode)
writer.add_scalar('train/kl/step', cur_kl / batch_size * num_modalities, i_episode)
writer.add_scalar('train/beta', beta, i_episode)
writer.add_scalar('val1/loss/step', val1_loss, i_episode)
writer.add_scalar('val1/lk+kl/step', val1_loss, i_episode)
writer.add_scalar('val2/loss/step', val2_loss, i_episode)
writer.add_scalar('val2/lk+kl/step', val2_loss, i_episode)
if std is not None:
writer.add_scalar('train/std', std, i_episode)
# reset log info
start_time = time.time()
if batch_idx+1 == len(train_loader):
# print
logging('| epoch {:3d} | {:5d}/{:5d} batches '
'| loss {:5.8f} | lk+kl {:5.8f} | likelihood {:5.8f} | kl {:5.8f} '
'{}'
.format(
epoch,
batch_idx+1, len(train_loader),
total_loss / total_batch_size, #len(train_loader.dataset),
(total_likelihood+total_kl) / total_batch_size, #/ len(train_loader.dataset),
total_likelihood / total_batch_size, #len(train_loader.dataset),
total_kl / total_batch_size, #len(train_loader.dataset),
''.join(['| m{}_{}_lk {:5.8f} '.format(i, mtype, total_mod_likelihoods[i] / total_mod_batch_sizes[i]) for i, (_, _, _, _, mtype) in enumerate(dataset_info['dims']) if total_mod_batch_sizes[i] > 0])
),
path=opt.path)
# write to tensorboard
writer.add_scalar('train/loss', total_loss / total_batch_size, epoch) #len(train_loader.dataset), epoch)
writer.add_scalar('train/likelihood', total_likelihood / total_batch_size, epoch) #len(train_loader.dataset), epoch)
for i, (_, _, _, _, mtype) in enumerate(dataset_info['dims']):
if total_mod_batch_sizes[i] > 0:
writer.add_scalar('train/m{}_{}_lk/step'.format(i, 'img' if mtype == 'image' else 'hpt'), total_mod_likelihoods[i] / total_mod_batch_sizes[i], epoch) #len(train_loader.dataset), epoch)
writer.add_scalar('train/kl', total_kl / total_batch_size, epoch) #len(train_loader.dataset), epoch)
writer.add_scalar('train/lk+kl', (total_likelihood + total_kl) / total_batch_size, epoch) #len(train_loader.dataset), epoch)
if (batch_idx+1) % opt.vis_interval == 0 or (batch_idx+1 == len(train_loader)):
# generate image with shuffled queries and random queries
model.eval()
with torch.no_grad():
# init queries
mod_queries, num_mod_queries = [], []
for idx, (_, _, _, _, mtype) in enumerate(dataset_info['dims']):
# get queries
if mtype == 'image':
# image queries
_mod_queries, _num_mod_queries = get_visualization_queries_with_predefined_dist(num_episodes, device)
elif mtype == 'haptic':
# haptic queries
_mod_queries, _num_mod_queries = get_visualization_queries_from_data(idx, train_target, num_episodes)
# append to list
mod_queries += [_mod_queries]
num_mod_queries += [_num_mod_queries]
# generate
gens, latent = model.generate(train_context, tuple(mod_queries))
model.train()
# visualize
img_gens = []
for idx, (nchannels, nheight, nwidth, _, mtype) in enumerate(dataset_info['dims']):
# get output and gen
output = outputs[idx]
gen = gens[idx]
_num_mod_queries = num_mod_queries[idx]
# visualize
if mtype == 'image':
# visualize predictions (image)
xs = get_visualization_image_data(idx, nchannels, nheight, nwidth, device, train_context, train_target, output, gen, _num_mod_queries, dataset_info['nviews'])
for i, x in enumerate(xs):
writer.add_image(
'train/m{}-cond-target-recon-gensh-genrd-i{}/img'.format(idx, i),
x, i_episode)
# temporary
img_gens += [gen]
num_img_queries = _num_mod_queries
elif mtype == 'haptic':
# visualize predictions (haptic)
xs = get_visualization_haptic_data(idx, nchannels, nheight, device, train_context, train_target, output, gen, _num_mod_queries)
for i, x in enumerate(xs):
writer.add_image(
'train/m{}-cond-target-recon-gensh-genrd-i{}/hpt'.format(idx, i),
x, i_episode)
else:
raise NotImplementedError
# visualize combined image
xs = get_combined_visualization_image_data(opt.dataset, dataset_info['dims'], img_gens, num_img_queries, min(4, len(train_context)))
for i, x in enumerate(xs):
writer.add_image('train/cond-target-recon-gensh-genrd-i{}/img'.format(i), x, i_episode)
# save model
with open(os.path.join(opt.path, 'model.pt'), 'wb') as f:
torch.save(model, f)
save_checkpoint({
'epoch': epoch+1 if (batch_idx+1) == len(train_loader) else epoch,
'batch_idx': (batch_idx+1) % len(train_loader),
'model': opt.model,
'state_dict': model.state_dict(),
'best_val1_loss': best_val1_loss,
'optimizer' : optimizer.state_dict(),
}, opt, False)
# flush writer
writer.flush()
if batch_idx+1 == len(train_loader):
writer.flush()
break
# init
best_val1_loss = opt.best_val1_loss
# at any point you can hit ctrl + c to break out of training early.
try:
for epoch in range(opt.start_epoch, opt.epochs+1):
epoch_start_time = time.time()
# train
train(train_loader, model, optimizer, epoch, opt.start_batch_idx)
opt.start_batch_idx = 0
# eval valid
val1_loss = evaluate(val1_loader)
val2_loss = evaluate(val2_loader) if run_val2 else -1.
# update lr scheduler
if scheduler is not None:
scheduler.step(val1_loss)
# logging
logging('-' * 89, path=opt.path)
logging('| end of epoch {:3d} | time: {:5.2f}s '
'| valid loss (lk+kl) {:5.8f} '.format(
epoch, (time.time() - epoch_start_time),
val1_loss),
path=opt.path)
logging('-' * 89, path=opt.path)
# write to tensorboard
writer.add_scalar('val1/loss', val1_loss, epoch)
writer.add_scalar('val1/lk+kl', val1_loss, epoch)
writer.add_scalar('val2/loss', val2_loss, epoch)
writer.add_scalar('val2/lk+kl', val2_loss, epoch)
# Save the model for each epoch
with open(os.path.join(opt.path, 'states-e{}.pt'.format(epoch)), 'wb') as f:
torch.save(model.state_dict(), f)
# Save the model if the validation loss is the best we've seen so far.
if not best_val1_loss or val1_loss < best_val1_loss:
with open(os.path.join(opt.path, 'best-model.pt'), 'wb') as f:
torch.save(model, f)
best_val1_loss = val1_loss
else:
pass
# flush writer
writer.flush()
except KeyboardInterrupt:
writer.flush()
logging('-' * 89, path=opt.path)
logging('Exiting from training early', path=opt.path)