|
| 1 | +import backend as F |
| 2 | + |
| 3 | +import pytest |
| 4 | +import torch |
| 5 | + |
| 6 | +from dgl import graphbolt as gb |
| 7 | + |
| 8 | + |
| 9 | +@pytest.mark.parametrize( |
| 10 | + "dtype", |
| 11 | + [ |
| 12 | + torch.bool, |
| 13 | + torch.uint8, |
| 14 | + torch.int8, |
| 15 | + torch.int16, |
| 16 | + torch.int32, |
| 17 | + torch.int64, |
| 18 | + torch.float16, |
| 19 | + torch.bfloat16, |
| 20 | + torch.float32, |
| 21 | + torch.float64, |
| 22 | + ], |
| 23 | +) |
| 24 | +@pytest.mark.parametrize("policy", ["s3-fifo", "sieve", "lru", "clock"]) |
| 25 | +def test_cpu_cached_feature(dtype, policy): |
| 26 | + cache_size_a = 32 |
| 27 | + cache_size_b = 64 |
| 28 | + a = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dtype) |
| 29 | + b = torch.tensor([[[1, 2], [3, 4]], [[4, 5], [6, 7]]], dtype=dtype) |
| 30 | + |
| 31 | + pin_memory = F._default_context_str == "gpu" |
| 32 | + |
| 33 | + cache_size_a *= a[:1].nbytes |
| 34 | + cache_size_b *= b[:1].nbytes |
| 35 | + |
| 36 | + feat_store_a = gb.CPUCachedFeature( |
| 37 | + gb.TorchBasedFeature(a), cache_size_a, policy, pin_memory |
| 38 | + ) |
| 39 | + feat_store_b = gb.CPUCachedFeature( |
| 40 | + gb.TorchBasedFeature(b), cache_size_b, policy, pin_memory |
| 41 | + ) |
| 42 | + |
| 43 | + # Test read the entire feature. |
| 44 | + assert torch.equal(feat_store_a.read(), a) |
| 45 | + assert torch.equal(feat_store_b.read(), b) |
| 46 | + |
| 47 | + # Test read with ids. |
| 48 | + assert torch.equal( |
| 49 | + feat_store_a.read(torch.tensor([0])), |
| 50 | + torch.tensor([[1, 2, 3]], dtype=dtype), |
| 51 | + ) |
| 52 | + assert torch.equal( |
| 53 | + feat_store_b.read(torch.tensor([1, 1])), |
| 54 | + torch.tensor([[[4, 5], [6, 7]], [[4, 5], [6, 7]]], dtype=dtype), |
| 55 | + ) |
| 56 | + assert torch.equal( |
| 57 | + feat_store_a.read(torch.tensor([1, 1])), |
| 58 | + torch.tensor([[4, 5, 6], [4, 5, 6]], dtype=dtype), |
| 59 | + ) |
| 60 | + assert torch.equal( |
| 61 | + feat_store_b.read(torch.tensor([0])), |
| 62 | + torch.tensor([[[1, 2], [3, 4]]], dtype=dtype), |
| 63 | + ) |
| 64 | + # The cache should be full now for the large cache sizes, %100 hit expected. |
| 65 | + total_miss = feat_store_a._feature.total_miss |
| 66 | + feat_store_a.read(torch.tensor([0, 1])) |
| 67 | + assert total_miss == feat_store_a._feature.total_miss |
| 68 | + total_miss = feat_store_b._feature.total_miss |
| 69 | + feat_store_b.read(torch.tensor([0, 1])) |
| 70 | + assert total_miss == feat_store_b._feature.total_miss |
| 71 | + |
| 72 | + # Test get the size of the entire feature with ids. |
| 73 | + assert feat_store_a.size() == torch.Size([3]) |
| 74 | + assert feat_store_b.size() == torch.Size([2, 2]) |
| 75 | + |
| 76 | + # Test update the entire feature. |
| 77 | + feat_store_a.update(torch.tensor([[0, 1, 2], [3, 5, 2]], dtype=dtype)) |
| 78 | + assert torch.equal( |
| 79 | + feat_store_a.read(), |
| 80 | + torch.tensor([[0, 1, 2], [3, 5, 2]], dtype=dtype), |
| 81 | + ) |
| 82 | + |
| 83 | + # Test update with ids. |
| 84 | + feat_store_a.update( |
| 85 | + torch.tensor([[2, 0, 1]], dtype=dtype), |
| 86 | + torch.tensor([0]), |
| 87 | + ) |
| 88 | + assert torch.equal( |
| 89 | + feat_store_a.read(), |
| 90 | + torch.tensor([[2, 0, 1], [3, 5, 2]], dtype=dtype), |
| 91 | + ) |
| 92 | + |
| 93 | + # Test with different dimensionality |
| 94 | + feat_store_a.update(b) |
| 95 | + assert torch.equal(feat_store_a.read(), b) |
0 commit comments