-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
single.go
811 lines (698 loc) · 25.5 KB
/
single.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
package chanbackup
import (
"bytes"
"errors"
"fmt"
"io"
"net"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/fn/v2"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnencrypt"
"github.com/lightningnetwork/lnd/lnwire"
)
// SingleBackupVersion denotes the version of the single static channel backup.
// Based on this version, we know how to pack/unpack serialized versions of the
// backup.
type SingleBackupVersion byte
const (
// DefaultSingleVersion is the default version of the single channel
// backup. The serialized version of this static channel backup is
// simply: version || SCB. Where SCB is the known format of the
// version.
DefaultSingleVersion = 0
// TweaklessCommitVersion is the second SCB version. This version
// implicitly denotes that this channel uses the new tweakless commit
// format.
TweaklessCommitVersion = 1
// AnchorsCommitVersion is the third SCB version. This version
// implicitly denotes that this channel uses the new anchor commitment
// format.
AnchorsCommitVersion = 2
// AnchorsZeroFeeHtlcTxCommitVersion is a version that denotes this
// channel is using the zero-fee second-level anchor commitment format.
AnchorsZeroFeeHtlcTxCommitVersion = 3
// ScriptEnforcedLeaseVersion is a version that denotes this channel is
// using the zero-fee second-level anchor commitment format along with
// an additional CLTV requirement of the channel lease maturity on any
// commitment and HTLC outputs that pay directly to the channel
// initiator.
ScriptEnforcedLeaseVersion = 4
// SimpleTaprootVersion is a version that denotes this channel is using
// the musig2 based taproot commitment format.
SimpleTaprootVersion = 5
// TapscriptRootVersion is a version that denotes this is a MuSig2
// channel with a top level tapscript commitment.
TapscriptRootVersion = 6
// closeTxVersionMask is the byte mask used that is ORed to version byte
// on wire indicating that the backup has CloseTxInputs.
closeTxVersionMask = 1 << 7
)
// Encode returns encoding of the version to put into channel backup.
// Argument "closeTx" specifies if the backup includes force close transaction.
func (v SingleBackupVersion) Encode(closeTx bool) byte {
encoded := byte(v)
// If the backup includes closing transaction, set this bit in the
// encoded version.
if closeTx {
encoded |= closeTxVersionMask
}
return encoded
}
// DecodeVersion decodes the encoding of the version from a channel backup.
// It returns the version and if the backup includes the force close tx.
func DecodeVersion(encoded byte) (SingleBackupVersion, bool) {
// Find if it has a closing transaction by inspecting the bit.
closeTx := (encoded & closeTxVersionMask) != 0
// The version byte also encodes the closeTxVersion feature, so we
// extract it here and return it separately to the backup version.
version := SingleBackupVersion(encoded &^ closeTxVersionMask)
return version, closeTx
}
// IsTaproot returns if this is a backup of a taproot channel. This will also be
// true for simple taproot overlay channels when a version is added.
func (v SingleBackupVersion) IsTaproot() bool {
return v == SimpleTaprootVersion || v == TapscriptRootVersion
}
// HasTapscriptRoot returns true if the channel is using a top level tapscript
// root commitment.
func (v SingleBackupVersion) HasTapscriptRoot() bool {
return v == TapscriptRootVersion
}
// Single is a static description of an existing channel that can be used for
// the purposes of backing up. The fields in this struct allow a node to
// recover the settled funds within a channel in the case of partial or
// complete data loss. We provide the network address that we last used to
// connect to the peer as well, in case the node stops advertising the IP on
// the network for whatever reason.
//
// TODO(roasbeef): suffix version into struct?
type Single struct {
// Version is the version that should be observed when attempting to
// pack the single backup.
Version SingleBackupVersion
// IsInitiator is true if we were the initiator of the channel, and
// false otherwise. We'll need to know this information in order to
// properly re-derive the state hint information.
IsInitiator bool
// ChainHash is a hash which represents the blockchain that this
// channel will be opened within. This value is typically the genesis
// hash. In the case that the original chain went through a contentious
// hard-fork, then this value will be tweaked using the unique fork
// point on each branch.
ChainHash chainhash.Hash
// FundingOutpoint is the outpoint of the final funding transaction.
// This value uniquely and globally identities the channel within the
// target blockchain as specified by the chain hash parameter.
FundingOutpoint wire.OutPoint
// ShortChannelID encodes the exact location in the chain in which the
// channel was initially confirmed. This includes: the block height,
// transaction index, and the output within the target transaction.
// Channels that were not confirmed at the time of backup creation will
// have the funding TX broadcast height set as their block height in
// the ShortChannelID.
ShortChannelID lnwire.ShortChannelID
// RemoteNodePub is the identity public key of the remote node this
// channel has been established with.
RemoteNodePub *btcec.PublicKey
// Addresses is a list of IP address in which either we were able to
// reach the node over in the past, OR we received an incoming
// authenticated connection for the stored identity public key.
Addresses []net.Addr
// Capacity is the size of the original channel.
Capacity btcutil.Amount
// LocalChanCfg is our local channel configuration. It contains all the
// information we need to re-derive the keys we used within the
// channel. Most importantly, it allows to derive the base public
// that's used to deriving the key used within the non-delayed
// pay-to-self output on the commitment transaction for a node. With
// this information, we can re-derive the private key needed to sweep
// the funds on-chain.
//
// NOTE: Of the items in the ChannelConstraints, we only write the CSV
// delay.
LocalChanCfg channeldb.ChannelConfig
// RemoteChanCfg is the remote channel confirmation. We store this as
// well since we'll need some of their keys to re-derive things like
// the state hint obfuscator which will allow us to recognize the state
// their broadcast on chain.
//
// NOTE: Of the items in the ChannelConstraints, we only write the CSV
// delay.
RemoteChanCfg channeldb.ChannelConfig
// ShaChainRootDesc describes how to derive the private key that was
// used as the shachain root for this channel.
ShaChainRootDesc keychain.KeyDescriptor
// LeaseExpiry represents the absolute expiration as a height of the
// chain of a channel lease that is applied to every output that pays
// directly to the channel initiator in addition to the usual CSV
// requirement.
//
// NOTE: This field will only be present for the following versions:
//
// - ScriptEnforcedLeaseVersion
LeaseExpiry uint32
// CloseTxInputs contains data needed to produce a force close tx
// using for example the "chantools scbforceclose" command.
//
// The field is optional.
CloseTxInputs fn.Option[CloseTxInputs]
}
// CloseTxInputs contains data needed to produce a force close transaction
// using for example the "chantools scbforceclose" command.
type CloseTxInputs struct {
// CommitTx is the latest version of the commitment state, broadcast
// able by us, but not signed. It can be signed by for example the
// "chantools scbforceclose" command.
CommitTx *wire.MsgTx
// CommitSig is one half of the signature required to fully complete
// the script for the commitment transaction above. This is the
// signature signed by the remote party for our version of the
// commitment transactions.
CommitSig []byte
// CommitHeight is the update number that this ChannelDelta represents
// the total number of commitment updates to this point. This can be
// viewed as sort of a "commitment height" as this number is
// monotonically increasing.
//
// This field is filled only for taproot channels.
CommitHeight uint64
// TapscriptRoot is the root of the tapscript tree that will be used to
// create the funding output. This is an optional field that should
// only be set for overlay taproot channels (HasTapscriptRoot).
TapscriptRoot fn.Option[chainhash.Hash]
}
// NewSingle creates a new static channel backup based on an existing open
// channel. We also pass in the set of addresses that we used in the past to
// connect to the channel peer. If possible, we include the data needed to
// produce a force close transaction from the most recent state using externally
// provided private key.
func NewSingle(channel *channeldb.OpenChannel,
nodeAddrs []net.Addr) Single {
var shaChainRootDesc keychain.KeyDescriptor
// If the channel has a populated RevocationKeyLocator, then we can
// just store that instead of the public key.
if channel.RevocationKeyLocator.Family == keychain.KeyFamilyRevocationRoot {
shaChainRootDesc = keychain.KeyDescriptor{
KeyLocator: channel.RevocationKeyLocator,
}
} else {
// If the RevocationKeyLocator is not populated, then we'll need
// to obtain a public point for the shachain root and store that.
// This is the legacy scheme.
var b bytes.Buffer
_ = channel.RevocationProducer.Encode(&b) // Can't return an error.
// Once we have the root, we'll make a public key from it, such that
// the backups plaintext don't carry any private information. When
// we go to recover, we'll present this in order to derive the
// private key.
_, shaChainPoint := btcec.PrivKeyFromBytes(b.Bytes())
shaChainRootDesc = keychain.KeyDescriptor{
PubKey: shaChainPoint,
KeyLocator: keychain.KeyLocator{
Family: keychain.KeyFamilyRevocationRoot,
},
}
}
// If a channel is unconfirmed, the block height of the ShortChannelID
// is zero. This will lead to problems when trying to restore that
// channel as the spend notifier would get a height hint of zero.
// To work around that problem, we add the channel broadcast height
// to the channel ID so we can use that as height hint on restore.
chanID := channel.ShortChanID()
if chanID.BlockHeight == 0 {
chanID.BlockHeight = channel.BroadcastHeight()
}
// If this is a zero-conf channel, we'll need to have separate logic
// depending on whether it's confirmed or not. This is because the
// ShortChanID is an alias.
if channel.IsZeroConf() {
// If the channel is confirmed, we'll use the confirmed SCID.
if channel.ZeroConfConfirmed() {
chanID = channel.ZeroConfRealScid()
} else {
// Else if the zero-conf channel is unconfirmed, we'll
// need to use the broadcast height and zero out the
// TxIndex and TxPosition fields. This is so
// openChannelShell works properly.
chanID.BlockHeight = channel.BroadcastHeight()
chanID.TxIndex = 0
chanID.TxPosition = 0
}
}
single := Single{
IsInitiator: channel.IsInitiator,
ChainHash: channel.ChainHash,
FundingOutpoint: channel.FundingOutpoint,
ShortChannelID: chanID,
RemoteNodePub: channel.IdentityPub,
Addresses: nodeAddrs,
Capacity: channel.Capacity,
LocalChanCfg: channel.LocalChanCfg,
RemoteChanCfg: channel.RemoteChanCfg,
ShaChainRootDesc: shaChainRootDesc,
}
switch {
case channel.ChanType.IsTaproot():
if channel.ChanType.HasTapscriptRoot() {
single.Version = TapscriptRootVersion
} else {
single.Version = SimpleTaprootVersion
}
case channel.ChanType.HasLeaseExpiration():
single.Version = ScriptEnforcedLeaseVersion
single.LeaseExpiry = channel.ThawHeight
case channel.ChanType.ZeroHtlcTxFee():
single.Version = AnchorsZeroFeeHtlcTxCommitVersion
case channel.ChanType.HasAnchors():
single.Version = AnchorsCommitVersion
case channel.ChanType.IsTweakless():
single.Version = TweaklessCommitVersion
default:
single.Version = DefaultSingleVersion
}
// Include unsigned force-close transaction for the most recent channel
// state as well as the data needed to produce the signature, given the
// private key is provided separately.
single.CloseTxInputs = buildCloseTxInputs(channel)
return single
}
// errEmptyTapscriptRoot is returned by Serialize if field TapscriptRoot is
// empty, when it should be filled according to the channel version.
var errEmptyTapscriptRoot = errors.New("field TapscriptRoot is not filled")
// Serialize attempts to write out the serialized version of the target
// StaticChannelBackup into the passed io.Writer.
func (s *Single) Serialize(w io.Writer) error {
// Check to ensure that we'll only attempt to serialize a version that
// we're aware of.
switch s.Version {
case DefaultSingleVersion:
case TweaklessCommitVersion:
case AnchorsCommitVersion:
case AnchorsZeroFeeHtlcTxCommitVersion:
case ScriptEnforcedLeaseVersion:
case SimpleTaprootVersion:
case TapscriptRootVersion:
default:
return fmt.Errorf("unable to serialize w/ unknown "+
"version: %v", s.Version)
}
// If the sha chain root has specified a public key (which is
// optional), then we'll encode it now.
var shaChainPub [33]byte
if s.ShaChainRootDesc.PubKey != nil {
copy(
shaChainPub[:],
s.ShaChainRootDesc.PubKey.SerializeCompressed(),
)
}
// First we gather the SCB as is into a temporary buffer so we can
// determine the total length. Before we write out the serialized SCB,
// we write the length which allows us to skip any Singles that we
// don't know of when decoding a multi.
var singleBytes bytes.Buffer
if err := lnwire.WriteElements(
&singleBytes,
s.IsInitiator,
s.ChainHash[:],
s.FundingOutpoint,
s.ShortChannelID,
s.RemoteNodePub,
s.Addresses,
s.Capacity,
s.LocalChanCfg.CsvDelay,
// We only need to write out the KeyLocator portion of the
// local channel config.
uint32(s.LocalChanCfg.MultiSigKey.Family),
s.LocalChanCfg.MultiSigKey.Index,
uint32(s.LocalChanCfg.RevocationBasePoint.Family),
s.LocalChanCfg.RevocationBasePoint.Index,
uint32(s.LocalChanCfg.PaymentBasePoint.Family),
s.LocalChanCfg.PaymentBasePoint.Index,
uint32(s.LocalChanCfg.DelayBasePoint.Family),
s.LocalChanCfg.DelayBasePoint.Index,
uint32(s.LocalChanCfg.HtlcBasePoint.Family),
s.LocalChanCfg.HtlcBasePoint.Index,
s.RemoteChanCfg.CsvDelay,
// We only need to write out the raw pubkey for the remote
// channel config.
s.RemoteChanCfg.MultiSigKey.PubKey,
s.RemoteChanCfg.RevocationBasePoint.PubKey,
s.RemoteChanCfg.PaymentBasePoint.PubKey,
s.RemoteChanCfg.DelayBasePoint.PubKey,
s.RemoteChanCfg.HtlcBasePoint.PubKey,
shaChainPub[:],
uint32(s.ShaChainRootDesc.KeyLocator.Family),
s.ShaChainRootDesc.KeyLocator.Index,
); err != nil {
return err
}
if s.Version == ScriptEnforcedLeaseVersion {
err := lnwire.WriteElements(&singleBytes, s.LeaseExpiry)
if err != nil {
return err
}
}
// Encode version enum and hasCloseTx flag to version byte.
version := s.Version.Encode(s.CloseTxInputs.IsSome())
// Serialize CloseTxInputs if it is provided. Fill err if it fails.
err := fn.MapOptionZ(s.CloseTxInputs, func(inputs CloseTxInputs) error {
err := inputs.CommitTx.Serialize(&singleBytes)
if err != nil {
return err
}
err = lnwire.WriteElements(
&singleBytes,
uint16(len(inputs.CommitSig)), inputs.CommitSig,
)
if err != nil {
return err
}
if !s.Version.IsTaproot() {
return nil
}
// Write fields needed for taproot channels.
err = lnwire.WriteElements(
&singleBytes, inputs.CommitHeight,
)
if err != nil {
return err
}
if s.Version.HasTapscriptRoot() {
opt := inputs.TapscriptRoot
var tapscriptRoot chainhash.Hash
tapscriptRoot, err = opt.UnwrapOrErr(
errEmptyTapscriptRoot,
)
if err != nil {
return err
}
err = lnwire.WriteElements(
&singleBytes, tapscriptRoot[:],
)
if err != nil {
return err
}
}
return nil
})
if err != nil {
return fmt.Errorf("failed to encode CloseTxInputs: %w", err)
}
// TODO(yy): remove the type assertion when we finished refactoring db
// into using write buffer.
buf, ok := w.(*bytes.Buffer)
if !ok {
return fmt.Errorf("expect io.Writer to be *bytes.Buffer")
}
return lnwire.WriteElements(
buf,
version,
uint16(len(singleBytes.Bytes())),
singleBytes.Bytes(),
)
}
// PackToWriter is similar to the Serialize method, but takes the operation a
// step further by encryption the raw bytes of the static channel back up. For
// encryption we use the chacah20poly1305 AEAD cipher with a 24 byte nonce and
// 32-byte key size. We use a 24-byte nonce, as we can't ensure that we have a
// global counter to use as a sequence number for nonces, and want to ensure
// that we're able to decrypt these blobs without any additional context. We
// derive the key that we use for encryption via a SHA2 operation of the with
// the golden keychain.KeyFamilyBaseEncryption base encryption key. We then
// take the serialized resulting shared secret point, and hash it using sha256
// to obtain the key that we'll use for encryption. When using the AEAD, we
// pass the nonce as associated data such that we'll be able to package the two
// together for storage. Before writing out the encrypted payload, we prepend
// the nonce to the final blob.
func (s *Single) PackToWriter(w io.Writer, keyRing keychain.KeyRing) error {
// First, we'll serialize the SCB (StaticChannelBackup) into a
// temporary buffer so we can store it in a temporary place before we
// go to encrypt the entire thing.
var rawBytes bytes.Buffer
if err := s.Serialize(&rawBytes); err != nil {
return err
}
// Finally, we'll encrypt the raw serialized SCB (using the nonce as
// associated data), and write out the ciphertext prepend with the
// nonce that we used to the passed io.Reader.
e, err := lnencrypt.KeyRingEncrypter(keyRing)
if err != nil {
return fmt.Errorf("unable to generate encrypt key %w", err)
}
return e.EncryptPayloadToWriter(rawBytes.Bytes(), w)
}
// readLocalKeyDesc reads a KeyDescriptor encoded within an unpacked Single.
// For local KeyDescs, we only write out the KeyLocator information as we can
// re-derive the pubkey from it.
func readLocalKeyDesc(r io.Reader) (keychain.KeyDescriptor, error) {
var keyDesc keychain.KeyDescriptor
var keyFam uint32
if err := lnwire.ReadElements(r, &keyFam); err != nil {
return keyDesc, err
}
keyDesc.Family = keychain.KeyFamily(keyFam)
if err := lnwire.ReadElements(r, &keyDesc.Index); err != nil {
return keyDesc, err
}
return keyDesc, nil
}
// readRemoteKeyDesc reads a remote KeyDescriptor encoded within an unpacked
// Single. For remote KeyDescs, we write out only the PubKey since we don't
// actually have the KeyLocator data.
func readRemoteKeyDesc(r io.Reader) (keychain.KeyDescriptor, error) {
var (
keyDesc keychain.KeyDescriptor
pub [33]byte
)
_, err := io.ReadFull(r, pub[:])
if err != nil {
return keychain.KeyDescriptor{}, err
}
keyDesc.PubKey, err = btcec.ParsePubKey(pub[:])
if err != nil {
return keychain.KeyDescriptor{}, err
}
return keyDesc, nil
}
// Deserialize attempts to read the raw plaintext serialized SCB from the
// passed io.Reader. If the method is successful, then the target
// StaticChannelBackup will be fully populated.
func (s *Single) Deserialize(r io.Reader) error {
// First, we'll need to read the version of this single-back up so we
// can know how to unpack each of the SCB.
var version byte
err := lnwire.ReadElements(r, &version)
if err != nil {
return err
}
// Decode version byte to version enum and hasCloseTx flag.
var hasCloseTx bool
s.Version, hasCloseTx = DecodeVersion(version)
switch s.Version {
case DefaultSingleVersion:
case TweaklessCommitVersion:
case AnchorsCommitVersion:
case AnchorsZeroFeeHtlcTxCommitVersion:
case ScriptEnforcedLeaseVersion:
case SimpleTaprootVersion:
case TapscriptRootVersion:
default:
return fmt.Errorf("unable to de-serialize w/ unknown "+
"version: %v", s.Version)
}
var length uint16
if err := lnwire.ReadElements(r, &length); err != nil {
return err
}
err = lnwire.ReadElements(
r, &s.IsInitiator, s.ChainHash[:], &s.FundingOutpoint,
&s.ShortChannelID, &s.RemoteNodePub, &s.Addresses, &s.Capacity,
)
if err != nil {
return err
}
err = lnwire.ReadElements(r, &s.LocalChanCfg.CsvDelay)
if err != nil {
return err
}
s.LocalChanCfg.MultiSigKey, err = readLocalKeyDesc(r)
if err != nil {
return err
}
s.LocalChanCfg.RevocationBasePoint, err = readLocalKeyDesc(r)
if err != nil {
return err
}
s.LocalChanCfg.PaymentBasePoint, err = readLocalKeyDesc(r)
if err != nil {
return err
}
s.LocalChanCfg.DelayBasePoint, err = readLocalKeyDesc(r)
if err != nil {
return err
}
s.LocalChanCfg.HtlcBasePoint, err = readLocalKeyDesc(r)
if err != nil {
return err
}
err = lnwire.ReadElements(r, &s.RemoteChanCfg.CsvDelay)
if err != nil {
return err
}
s.RemoteChanCfg.MultiSigKey, err = readRemoteKeyDesc(r)
if err != nil {
return err
}
s.RemoteChanCfg.RevocationBasePoint, err = readRemoteKeyDesc(r)
if err != nil {
return err
}
s.RemoteChanCfg.PaymentBasePoint, err = readRemoteKeyDesc(r)
if err != nil {
return err
}
s.RemoteChanCfg.DelayBasePoint, err = readRemoteKeyDesc(r)
if err != nil {
return err
}
s.RemoteChanCfg.HtlcBasePoint, err = readRemoteKeyDesc(r)
if err != nil {
return err
}
// Finally, we'll parse out the ShaChainRootDesc.
var (
shaChainPub [33]byte
zeroPub [33]byte
)
if err := lnwire.ReadElements(r, shaChainPub[:]); err != nil {
return err
}
// Since this field is optional, we'll check to see if the pubkey has
// been specified or not.
if !bytes.Equal(shaChainPub[:], zeroPub[:]) {
s.ShaChainRootDesc.PubKey, err = btcec.ParsePubKey(
shaChainPub[:],
)
if err != nil {
return err
}
}
var shaKeyFam uint32
if err := lnwire.ReadElements(r, &shaKeyFam); err != nil {
return err
}
s.ShaChainRootDesc.KeyLocator.Family = keychain.KeyFamily(shaKeyFam)
err = lnwire.ReadElements(r, &s.ShaChainRootDesc.KeyLocator.Index)
if err != nil {
return err
}
if s.Version == ScriptEnforcedLeaseVersion {
if err := lnwire.ReadElement(r, &s.LeaseExpiry); err != nil {
return err
}
}
if !hasCloseTx {
return nil
}
// Deserialize CloseTxInputs if it is present in serialized data.
commitTx := &wire.MsgTx{}
if err := commitTx.Deserialize(r); err != nil {
return err
}
var commitSigLen uint16
if err := lnwire.ReadElement(r, &commitSigLen); err != nil {
return err
}
commitSig := make([]byte, commitSigLen)
if err := lnwire.ReadElement(r, commitSig); err != nil {
return err
}
var commitHeight uint64
if s.Version.IsTaproot() {
err := lnwire.ReadElement(r, &commitHeight)
if err != nil {
return err
}
}
tapscriptRootOpt := fn.None[chainhash.Hash]()
if s.Version.HasTapscriptRoot() {
var tapscriptRoot chainhash.Hash
err := lnwire.ReadElement(r, tapscriptRoot[:])
if err != nil {
return err
}
tapscriptRootOpt = fn.Some(tapscriptRoot)
}
s.CloseTxInputs = fn.Some(CloseTxInputs{
CommitTx: commitTx,
CommitSig: commitSig,
CommitHeight: commitHeight,
TapscriptRoot: tapscriptRootOpt,
})
return nil
}
// UnpackFromReader is similar to Deserialize method, but it expects the passed
// io.Reader to contain an encrypt SCB. Refer to the SerializeAndEncrypt method
// for details w.r.t the encryption scheme used. If we're unable to decrypt the
// payload for whatever reason (wrong key, wrong nonce, etc), then this method
// will return an error.
func (s *Single) UnpackFromReader(r io.Reader, keyRing keychain.KeyRing) error {
e, err := lnencrypt.KeyRingEncrypter(keyRing)
if err != nil {
return fmt.Errorf("unable to generate key decrypter %w", err)
}
plaintext, err := e.DecryptPayloadFromReader(r)
if err != nil {
return err
}
// Finally, we'll pack the bytes into a reader to we can deserialize
// the plaintext bytes of the SCB.
backupReader := bytes.NewReader(plaintext)
return s.Deserialize(backupReader)
}
// PackStaticChanBackups accepts a set of existing open channels, and a
// keychain.KeyRing, and returns a map of outpoints to the serialized+encrypted
// static channel backups. The passed keyRing should be backed by the users
// root HD seed in order to ensure full determinism.
func PackStaticChanBackups(backups []Single,
keyRing keychain.KeyRing) (map[wire.OutPoint][]byte, error) {
packedBackups := make(map[wire.OutPoint][]byte)
for _, chanBackup := range backups {
chanPoint := chanBackup.FundingOutpoint
var b bytes.Buffer
err := chanBackup.PackToWriter(&b, keyRing)
if err != nil {
return nil, fmt.Errorf("unable to pack chan backup "+
"for %v: %v", chanPoint, err)
}
packedBackups[chanPoint] = b.Bytes()
}
return packedBackups, nil
}
// PackedSingles represents a series of fully packed SCBs. This may be the
// combination of a series of individual SCBs in order to batch their
// unpacking.
type PackedSingles [][]byte
// Unpack attempts to decrypt the passed set of encrypted SCBs and deserialize
// each one into a new SCB struct. The passed keyRing should be backed by the
// same HD seed as was used to encrypt the set of backups in the first place.
// If we're unable to decrypt any of the back ups, then we'll return an error.
func (p PackedSingles) Unpack(keyRing keychain.KeyRing) ([]Single, error) {
backups := make([]Single, len(p))
for i, encryptedBackup := range p {
var backup Single
backupReader := bytes.NewReader(encryptedBackup)
err := backup.UnpackFromReader(backupReader, keyRing)
if err != nil {
return nil, err
}
backups[i] = backup
}
return backups, nil
}
// TODO(roasbeef): make codec package?