-
Notifications
You must be signed in to change notification settings - Fork 7
/
vis.py
executable file
·684 lines (597 loc) · 21.7 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import os
from pathlib import Path
import sys
from tempfile import TemporaryDirectory
import librosa as lr
import matplotlib.animation as animation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import numpy as np
import soundfile as sf
import torch
from matplotlib import cm
from matplotlib.colors import ListedColormap
from pytorch3d.transforms import (axis_angle_to_quaternion, quaternion_apply,
quaternion_multiply)
from tqdm import tqdm
from typing import NewType
Tensor = NewType('Tensor', torch.Tensor)
import torch.nn.functional as F
import pickle5 as pickle
smpl_joints = [
"root", # 0
"lhip", # 1
"rhip", # 2
"belly", # 3
"lknee", # 4
"rknee", # 5
"spine", # 6
"lankle",# 7
"rankle",# 8
"chest", # 9
"ltoes", # 10
"rtoes", # 11
"neck", # 12
"linshoulder", # 13
"rinshoulder", # 14
"head", # 15
"lshoulder", # 16
"rshoulder", # 17
"lelbow", # 18
"relbow", # 19
"lwrist", # 20
"rwrist", # 21
"lhand", # 22
"rhand", # 23
]
smplh_joints = [
'pelvis',
'left_hip',
'right_hip',
'spine1',
'left_knee',
'right_knee',
'spine2',
'left_ankle',
'right_ankle',
'spine3',
'left_foot',
'right_foot',
'neck',
'left_collar',
'right_collar',
'head',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'left_index1',
'left_index2',
'left_index3',
'left_middle1',
'left_middle2',
'left_middle3',
'left_pinky1',
'left_pinky2',
'left_pinky3',
'left_ring1',
'left_ring2',
'left_ring3',
'left_thumb1',
'left_thumb2',
'left_thumb3',
'right_index1',
'right_index2',
'right_index3',
'right_middle1',
'right_middle2',
'right_middle3',
'right_pinky1',
'right_pinky2',
'right_pinky3',
'right_ring1',
'right_ring2',
'right_ring3',
'right_thumb1',
'right_thumb2',
'right_thumb3'
]
smplx_joints = [
'pelvis',
'left_hip',
'right_hip',
'spine1',
'left_knee',
'right_knee',
'spine2',
'left_ankle',
'right_ankle',
'spine3',
'left_foot',
'right_foot',
'neck',
'left_collar',
'right_collar',
'head',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'jaw',
'left_eye_smplhf',
'right_eye_smplhf',
'left_index1',
'left_index2',
'left_index3',
'left_middle1',
'left_middle2',
'left_middle3',
'left_pinky1',
'left_pinky2',
'left_pinky3',
'left_ring1',
'left_ring2',
'left_ring3',
'left_thumb1',
'left_thumb2',
'left_thumb3',
'right_index1',
'right_index2',
'right_index3',
'right_middle1',
'right_middle2',
'right_middle3',
'right_pinky1',
'right_pinky2',
'right_pinky3',
'right_ring1',
'right_ring2',
'right_ring3',
'right_thumb1',
'right_thumb2',
'right_thumb3'
]
smpl_parents = [
-1,
0,
0,
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
9,
9,
12,
13,
14,
16,
17,
18,
19,
20,
21,
]
smplh_parents = [-1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14,
16, 17, 18, 19, 20, 22, 23, 20, 25, 26, 20, 28, 29, 20, 31, 32, 20, 34,
35, 21, 37, 38, 21, 40, 41, 21, 43, 44, 21, 46, 47, 21, 49, 50]
smplx_parents = [-1, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19, 15, 15, 15, 20, 25, 26, 20, 28, 29, 20, 31, 32, 20, 34, 35, 20, 37, 38, 21, 40, 41, 21, 43, 44, 21, 46, 47, 21, 49, 50, 21, 52, 53]
smpl_offsets = [
[0.0, 0.0, 0.0],
[0.05858135, -0.08228004, -0.01766408],
[-0.06030973, -0.09051332, -0.01354254],
[0.00443945, 0.12440352, -0.03838522],
[0.04345142, -0.38646945, 0.008037],
[-0.04325663, -0.38368791, -0.00484304],
[0.00448844, 0.1379564, 0.02682033],
[-0.01479032, -0.42687458, -0.037428],
[0.01905555, -0.4200455, -0.03456167],
[-0.00226458, 0.05603239, 0.00285505],
[0.04105436, -0.06028581, 0.12204243],
[-0.03483987, -0.06210566, 0.13032329],
[-0.0133902, 0.21163553, -0.03346758],
[0.07170245, 0.11399969, -0.01889817],
[-0.08295366, 0.11247234, -0.02370739],
[0.01011321, 0.08893734, 0.05040987],
[0.12292141, 0.04520509, -0.019046],
[-0.11322832, 0.04685326, -0.00847207],
[0.2553319, -0.01564902, -0.02294649],
[-0.26012748, -0.01436928, -0.03126873],
[0.26570925, 0.01269811, -0.00737473],
[-0.26910836, 0.00679372, -0.00602676],
[0.08669055, -0.01063603, -0.01559429],
[-0.0887537, -0.00865157, -0.01010708],
]
def set_line_data_3d(line, x):
line.set_data(x[:, :2].T)
line.set_3d_properties(x[:, 2])
def set_scatter_data_3d(scat, x, c):
scat.set_offsets(x[:, :2])
scat.set_3d_properties(x[:, 2], "z")
scat.set_facecolors([c])
def get_axrange(poses):
pose = poses[0]
x_min = pose[:, 0].min()
x_max = pose[:, 0].max()
y_min = pose[:, 1].min()
y_max = pose[:, 1].max()
z_min = pose[:, 2].min()
z_max = pose[:, 2].max()
xdiff = x_max - x_min
ydiff = y_max - y_min
zdiff = z_max - z_min
biggestdiff = max([xdiff, ydiff, zdiff])
return biggestdiff
def plot_single_pose(num, poses, lines, ax, axrange, scat, contact, ske_parents):
pose = poses[num]
static = contact[num]
indices = [7, 8, 10, 11]
for i, (point, idx) in enumerate(zip(scat, indices)):
position = pose[idx : idx + 1]
color = "r" if static[i] else "g"
set_scatter_data_3d(point, position, color)
for i, (p, line) in enumerate(zip(ske_parents, lines)):
# don't plot root
if i == 0:
continue
# stack to create a line
data = np.stack((pose[i], pose[p]), axis=0)
set_line_data_3d(line, data)
if num == 0:
if isinstance(axrange, int):
axrange = (axrange, axrange, axrange)
xcenter, ycenter, zcenter = 0, 0, 2.5
stepx, stepy, stepz = axrange[0] / 2, axrange[1] / 2, axrange[2] / 2
x_min, x_max = xcenter - stepx, xcenter + stepx
y_min, y_max = ycenter - stepy, ycenter + stepy
z_min, z_max = zcenter - stepz, zcenter + stepz
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_zlim(z_min, z_max)
def skeleton_render(
poses,
epoch=0,
out="renders",
name="",
sound=True,
stitch=False,
sound_folder="ood_sliced",
contact=None,
render=True,
smpl_mode="smpl", # 是否渲染双手
):
if render:
if smpl_mode=="smpl":
poses = np.concatenate((poses[:, :23, :], np.expand_dims(poses[:, 37, :], axis=1)), axis=1)
ske_parents = smpl_parents
elif smpl_mode == "smplx":
ske_parents = smplx_parents
# generate the pose with FK
Path(out).mkdir(parents=True, exist_ok=True)
num_steps = poses.shape[0] #
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
point = np.array([0, 0, 1])
normal = np.array([0, 0, 1])
d = -point.dot(normal)
xx, yy = np.meshgrid(np.linspace(-1.5, 1.5, 2), np.linspace(-1.5, 1.5, 2))
z = (-normal[0] * xx - normal[1] * yy - d) * 1.0 / normal[2]
# plot the plane
ax.plot_surface(xx, yy, z, zorder=-11, cmap=cm.twilight)
# Create lines initially without data
lines = [
ax.plot([], [], [], zorder=10, linewidth=1.5)[0]
for _ in ske_parents
]
scat = [
ax.scatter([], [], [], zorder=10, s=0, cmap=ListedColormap(["r", "g", "b"]))
for _ in range(4)
]
axrange = 3
# create contact labels
feet = poses[:, (7, 8, 10, 11)]
feetv = np.zeros(feet.shape[:2])
feetv[:-1] = np.linalg.norm(feet[1:] - feet[:-1], axis=-1)
if contact is None:
contact = feetv < 0.01
else:
contact = contact > 0.95
# Creating the Animation object
anim = animation.FuncAnimation(
fig,
plot_single_pose,
num_steps,
fargs=(poses, lines, ax, axrange, scat, contact, ske_parents),
interval=1000 // 30,
)
if sound:
# make a temporary directory to save the intermediate gif in
if render:
temp_dir = TemporaryDirectory()
gifname = os.path.join(temp_dir.name, f"{epoch}.gif")
anim.save(gifname)
# stitch wavs
if stitch:
assert type(name) == list # must be a list of names to do stitching
name_ = [os.path.splitext(x)[0] + ".wav" for x in name]
audio, sr = lr.load(name_[0], sr=None)
ll, half = len(audio), len(audio) // 2
total_wav = np.zeros(ll + half * (len(name_) - 1))
total_wav[:ll] = audio
idx = ll
for n_ in name_[1:]:
audio, sr = lr.load(n_, sr=None)
total_wav[idx : idx + half] = audio[half:]
idx += half
# save a dummy spliced audio
audioname = f"{temp_dir.name}/tempsound.wav" if render else os.path.join(out, f'{epoch}_{"_".join(os.path.splitext(os.path.basename(name[0]))[0].split("_")[:-1])}.wav')
sf.write(audioname, total_wav, sr)
outname = os.path.join(
out,
f'{epoch}_{"_".join(os.path.splitext(os.path.basename(name[0]))[0].split("_")[:-1])}.mp4',
)
else:
assert type(name) == str
assert name != "", "Must provide an audio filename"
audioname = name
outname = os.path.join(
out, f"{epoch}_{os.path.splitext(os.path.basename(name))[0]}.mp4"
)
if render:
print(f"ffmpeg -loglevel error -stream_loop 0 -y -i {gifname} -i {audioname} -shortest -c:v libx264 -crf 26 -c:a aac -q:a 4 {outname}")
out = os.system(
f"/home/lrh/Documents/ffmpeg-6.0-amd64-static/ffmpeg -loglevel error -stream_loop 0 -y -i {gifname} -i {audioname} -shortest -c:v libx264 -crf 26 -c:a aac -q:a 4 {outname}"
)
else:
if render:
# actually save the gif
path = os.path.normpath(name)
pathparts = path.split(os.sep)
gifname = os.path.join(out, f"{pathparts[-1][:-4]}.gif")
anim.save(gifname, savefig_kwargs={"transparent": True, "facecolor": "none"},)
plt.close()
class SMPLSkeleton:
def __init__(
self, device=None,
):
offsets = smpl_offsets
parents = smpl_parents
assert len(offsets) == len(parents)
self._offsets = torch.Tensor(offsets) #.to(device)
self._parents = np.array(parents)
self._compute_metadata()
def _compute_metadata(self):
self._has_children = np.zeros(len(self._parents)).astype(bool)
for i, parent in enumerate(self._parents):
if parent != -1:
self._has_children[parent] = True
self._children = []
for i, parent in enumerate(self._parents):
self._children.append([])
for i, parent in enumerate(self._parents):
if parent != -1:
self._children[parent].append(i)
def forward(self, rotations, root_positions):
"""
Perform forward kinematics using the given trajectory and local rotations.
Arguments (where N = batch size, L = sequence length, J = number of joints):
-- rotations: (N, L, J, 3) tensor of axis-angle rotations describing the local rotations of each joint.
-- root_positions: (N, L, 3) tensor describing the root joint positions.
"""
assert len(rotations.shape) == 4
assert len(root_positions.shape) == 3
# transform from axis angle to quaternion
fk_device = rotations.device
self._offsets.to(fk_device)
rotations = axis_angle_to_quaternion(rotations)
positions_world = []
rotations_world = []
expanded_offsets = self._offsets.expand(
rotations.shape[0],
rotations.shape[1],
self._offsets.shape[0],
self._offsets.shape[1],
).to(fk_device)
# Parallelize along the batch and time dimensions
for i in range(self._offsets.shape[0]):
if self._parents[i] == -1:
positions_world.append(root_positions)
rotations_world.append(rotations[:, :, 0])
else:
positions_world.append(
quaternion_apply(
rotations_world[self._parents[i]], expanded_offsets[:, :, i]
)
+ positions_world[self._parents[i]]
)
if self._has_children[i]:
rotations_world.append(
quaternion_multiply(
rotations_world[self._parents[i]], rotations[:, :, i]
)
)
else:
# This joint is a terminal node -> it would be useless to compute the transformation
rotations_world.append(None)
return torch.stack(positions_world, dim=3).permute(0, 1, 3, 2)
@torch.no_grad()
class SMPLX_Skeleton:
def __init__(
self, device=None, batch=64,
):
# offsets = smpl_offsets
self.device = device
self.parents = smplx_parents
self.J = np.load("/data/lrh/project/Dance/mdm_v2/model/smplx_neu_J_1.npy")
self.J = torch.from_numpy(self.J).to(device).unsqueeze(dim=0).repeat(batch, 1, 1)
def batch_rodrigues(self, rot_vecs: Tensor, epsilon: float = 1e-8,) -> Tensor:
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device, dtype = rot_vecs.device, rot_vecs.dtype
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def batch_rigid_transform(self,
rot_mats: Tensor,
joints: Tensor,
parents: Tensor,
dtype=torch.float32
) -> Tensor:
"""
Applies a batch of rigid transformations to the joints
Parameters
----------
rot_mats : torch.tensor BxNx3x3
Tensor of rotation matrices
joints : torch.tensor BxNx3
Locations of joints
parents : torch.tensor BxN
The kinematic tree of each object
dtype : torch.dtype, optional:
The data type of the created tensors, the default is torch.float32
Returns
-------
posed_joints : torch.tensor BxNx3
The locations of the joints after applying the pose rotations
rel_transforms : torch.tensor BxNx4x4
The relative (with respect to the root joint) rigid transformations
for all the joints
"""
joints = torch.unsqueeze(joints, dim=-1)
# joints_check = joints.detach().cpu().numpy()
rel_joints = joints.clone()
rel_joints[:, 1:] -= joints[:, parents[1:]]
transforms_mat = self.transform_mat(
rot_mats.reshape(-1, 3, 3),
rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4)
transform_chain = [transforms_mat[:, 0]]
for i in range(1, parents.shape[0]):
# Subtract the joint location at the rest pose
# No need for rotation, since it's identity when at rest
curr_res = torch.matmul(transform_chain[parents[i]],
transforms_mat[:, i])
transform_chain.append(curr_res)
transforms = torch.stack(transform_chain, dim=1)
# The last column of the transformations contains the posed joints
posed_joints = transforms[:, :, :3, 3]
# joints_homogen = F.pad(joints, [0, 0, 0, 1])
# rel_transforms = transforms - F.pad(
# torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
return posed_joints #, rel_transforms
def transform_mat(self, R: Tensor, t: Tensor) -> Tensor:
''' Creates a batch of transformation matrices
Args:
- R: Bx3x3 array of a batch of rotation matrices
- t: Bx3x1 array of a batch of translation vectors
Returns:
- T: Bx4x4 Transformation matrix
'''
# No padding left or right, only add an extra row
return torch.cat([F.pad(R, [0, 0, 0, 1]),
F.pad(t, [0, 0, 0, 1], value=1)], dim=2)
def motion_data_load_process(self, motionfile):
if motionfile.split(".")[-1] == "pkl":
pkl_data = pickle.load(open(motionfile, "rb"))
if "pos" in pkl_data.keys():
local_q_165 = torch.from_numpy(pkl_data["q"]).to(self.device).float()
root_pos = torch.from_numpy(pkl_data["pos"]).to(self.device).float()
root_pos = root_pos[:, :] - root_pos[0, :]
return local_q_165, root_pos
else:
smpl_poses = pkl_data["smpl_poses"]
if smpl_poses.shape[0] != 150 and smpl_poses.shape[0] != 300:
smpl_poses = smpl_poses.reshape(150, -1)
# modata = np.concatenate((pkl_data["smpl_trans"], smpl_poses), axis=1)
# assert modata.shape[1] == 159
# modata = torch.from_numpy(modata).to(f'cuda:{args.gpu}')
root_pos = pkl_data["smpl_trans"]
local_q = torch.from_numpy(smpl_poses).to(self.device).float()
root_pos = torch.from_numpy(root_pos).to(self.device).float()
local_q_165 = torch.cat([local_q[:, :66], torch.zeros([local_q.shape[0], 9], device=local_q.device, dtype=torch.float32), local_q[:, 66:]], dim=1).to(self.device).float()
root_pos = root_pos[:, :] - root_pos[0, :]
return local_q_165, root_pos
def forward(self, rotations, root_positions):
"""
Perform forward kinematics using the given trajectory and local rotations.
Arguments (where N = batch size, L = sequence length, J = number of joints):
-- rotations: (N, 156) 或 (N, 165)
-- root_positions: (N, 3)
输出: N, 55, 3 关节点全局坐标
"""
# assert len(rotations.shape) == 4
# assert len(root_positions.shape) == 3
# print(fk_device)
fk_device = rotations.device
if rotations.shape[1] == 156:
local_q_165 = torch.cat([rotations[:, :66], torch.zeros([rotations.shape[0], 9], device=fk_device, dtype=torch.float32), rotations[:, 66:]], dim=1).to(fk_device).float()
elif rotations.shape[1] == 165:
local_q_165 = rotations.to(fk_device).float()
else:
print("rotations shape error", rotations.shape)
sys.exit(0)
root_pos = root_positions.to(fk_device).float()
assert local_q_165.shape[1] == 165
B, C = local_q_165.shape
# print("local_q shape is:", local_q_165.shape)
rot_mats = self.batch_rodrigues(local_q_165.view(-1, 3)).view(
[B, -1, 3, 3])
# J = np.load("/data/lrh/project/Dance/mdm_v2/model/smplx_neu_J_1.npy")
if self.J.shape[0] >= B:
J_temp = self.J[:B,:,:] #self.J = self.J[:B,:,:]
else:
J_temp = self.J[:1,:,:].repeat(B, 1, 1)
print("warning: self.J size 0 is lower than batchsize x seq_len")
parents = torch.Tensor(self.parents).long() # if self.parents is None else self.parents
J_transformed = self.batch_rigid_transform(rot_mats, J_temp, parents, dtype=torch.float32)
J_transformed += root_pos.unsqueeze(dim=1)
# J_transformed = J_transformed.detach().cpu().numpy()
return J_transformed
if __name__ == "__main__":
print("1")
device = f'cuda:{0}'
smplx_fk = SMPLX_Skeleton(device = device, batch=150)
motion_file = "/home/data/lrh/datasets/fine_dance/magicsmpl/sliced/test/dances/012_slice0.pkl"
# music_file = "/home/data/lrh/datasets/fine_dance/magicsmpl/sliced/test/wavs/012_slice0.wav"
local_q_165, root_pos = smplx_fk.motion_data_load_process(motion_file)
print("local_q_165.shape", local_q_165.shape)
print("root_pos.shape", root_pos.shape)
joints = smplx_fk.forward(local_q_165, root_pos).detach().cpu().numpy() # 150, 165 150, 3
print("joints.shape", joints.shape)
# skeleton_render(
# joints,
# epoch=f"e{1}_b{1}",
# out="./output/temp",
# name=music_file,
# render=True,
# stitch=False,
# sound=True,
# smpl_mode="smplx"
# )