This repository has been archived by the owner on Nov 10, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
arg_data.c
258 lines (245 loc) · 6.64 KB
/
arg_data.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <zlib.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "kseq.h"
#include "arg_data.h"
KSTREAM_INIT(gzFile, gzread, 4096)
arg_data_t *arg_data_read(const char *fn)
{
kstream_t *ks;
kstring_t *str;
gzFile fp;
arg_data_t *ad;
int max_m, dret, i;
ad = (arg_data_t*)calloc(1, sizeof(arg_data_t));
ad->is_phased = 1;
str = (kstring_t*)calloc(1, sizeof(kstring_t));
fp = strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
ks = ks_init(fp);
max_m = 0;
while (ks_getuntil(ks, 0, str, &dret) >= 0) {
int pos = atoi(str->s);
int n[4];
ks_getuntil(ks, 0, str, &dret);
if (ad->n == 0) {
ad->n = strlen(str->s);
ad->seq = (char**)calloc(ad->n, sizeof(char*));
} else if (ad->n != strlen(str->s)) {
fprintf(stderr, "[arg_data_read] wrong input: variable individuals?\n");
exit(1);
}
// change scale
n[0] = n[1] = n[2] = n[3] = 0;
for (i = 0; i < ad->n; ++i) {
str->s[i] = (str->s[i] < '0' || str->s[i] > '2')? 3 : str->s[i] - '0';
++n[(int)str->s[i]];
}
if (n[2] > 0) ad->is_phased = 0;
if (ad->is_phased && n[2]%2 != 0) {
fprintf(stderr, "[arg_data_read] wrong input: unphased input with odd number of haplotypes\n");
exit(1);
}
if (n[3] == ad->n)
for (i = 0; i < ad->n; ++i) str->s[i] = 0;
if (n[2] > 0) {
for (i = 0; i < ad->n; i += 2) { // check
if ((str->s[i] == 2 && str->s[i+1] != 2) || (str->s[i] != 2 && str->s[i+1] == 2)) {
if (str->s[i] == 2) str->s[i+1] = 2;
else str->s[i] = 2;
fprintf(stderr, "[arg_read_data] fix inconsistent unphased character at (%d,%d)\n", pos, i);
}
}
if (n[2] + n[3] == ad->n) { // IMPORTANT: arbitrary phasing the first unphased character
for (i = 0; i < ad->n; i += 2) {
if (str->s[i] == 2) {
str->s[i] = 0; str->s[i+1] = 1;
break;
}
}
}
}
if (ad->m == max_m) {
max_m = max_m? max_m << 1 : 16;
ad->pos = (int*)realloc(ad->pos, sizeof(int) * max_m);
for (i = 0; i < ad->n; ++i)
ad->seq[i] = (char*)realloc(ad->seq[i], max_m);
}
ad->pos[ad->m] = pos;
for (i = 0; i < ad->n; ++i) ad->seq[i][ad->m] = str->s[i]; // copy over
++ad->m;
}
ks_destroy(ks);
gzclose(fp);
free(str->s); free(str);
fprintf(stderr, "[arg_data_read] %d samples; %d sites\n", ad->n, ad->m);
if (!ad->is_phased) fprintf(stderr, "[arg_data_read] the input is unphased\n");
return ad;
}
void arg_data_print(const arg_data_t *ad)
{
int i, j;
for (i = 0; i < ad->m; ++i) {
printf("%d\t", ad->pos[i]);
for (j = 0; j < ad->n; ++j)
putchar(ad->seq[j][i] + '0');
putchar('\n');
}
}
void arg_data_destroy(arg_data_t *ad)
{
int i;
if (ad == 0) return;
for (i = 0; i < ad->n; ++i) free(ad->seq[i]);
free(ad->seq); free(ad->pos);
free(ad);
}
/* Requirement:
1. seq[2*k] and seq[2*k+1] constitute a diploid sequence
2. if seq[0]!=seq[1], seq[2*k]!=seq[2*k+1] always stands
*/
char *arg_minimize_switches(int m, int n, char **seq)
{
int i, j, k, n_het = 0, *f, *bt;
char *last_char, *s, *ret;
assert(n%2 == 0);
// count # hets
for (i = k = 0; i < m; ++i)
if (seq[0][i] != seq[1][i]) ++k;
n_het = k;
// DP
f = (int*)calloc(n_het * 2, sizeof(int));
bt = (int*)calloc(n_het * 2, sizeof(int));
last_char = (char*)calloc(n/2, 1);
for (i = k = 0; i < m; ++i) {
int cnt[2];
if (seq[0][i] == seq[1][i]) continue; // not a het
cnt[0] = cnt[1] = 0;
for (j = 0; j < n; j += 2) {
++cnt[(last_char[j/2] == seq[j][i])? 0 : 1];
last_char[j/2] = seq[j][i];
}
if (k > 0) { // not the first het
int y[2];
y[0] = f[(k-1)<<1|0] + cnt[0];
y[1] = f[(k-1)<<1|1] + cnt[1];
f[k<<1|0] = y[0] > y[1]? y[0] : y[1];
bt[k<<1|0] = y[0] > y[1]? 0 : 1;
y[0] = f[(k-1)<<1|0] + cnt[1];
y[1] = f[(k-1)<<1|1] + cnt[0];
f[k<<1|1] = y[0] > y[1]? y[0] : y[1];
bt[k<<1|1] = y[0] > y[1]? 0 : 1;
} else f[0] = 0, f[1] = -0x7fffffff;
++k;
}
free(last_char);
// backtrace
s = (char*)calloc(n_het, 1);
j = f[(n_het-1)<<1|0] > f[(n_het-1)<<1|1]? 0 : 1;
for (k = n_het - 1; k >= 0; --k) {
s[k] = j;
j = bt[k<<1|j];
}
free(bt); free(f);
// write ret seq
ret = (char*)calloc(m, 1);
for (i = k = 0; i < m; ++i)
ret[i] = (seq[0][i] == seq[1][i])? seq[0][i] : s[k++];
free(s);
return ret;
}
int main_fadmerge(int argc, char *argv[])
{
arg_data_t *ret, **ad;
int n_fad, i, j;
char **seq, *s;
if (argc < 4) {
fprintf(stderr, "Usage: fastARG fadmerge <in1.fad> <in2.fad> <in3.fad> ...\n");
return 1;
}
// load fads
n_fad = argc - 1;
ad = (arg_data_t**)calloc(n_fad, sizeof(void*));
for (i = 0; i < n_fad; ++i)
ad[i] = arg_data_read(argv[i + 1]);
// merge
ret = (arg_data_t*)calloc(1, sizeof(arg_data_t));
ret->n = ad[0]->n; ret->m = ad[0]->m;
ret->pos = (int*)calloc(ret->m, sizeof(int));
ret->seq = (char**)calloc(ret->n, sizeof(void*));
seq = (char**)calloc(n_fad * 2, sizeof(void*));
for (j = 0; j < ret->n; j += 2) {
for (i = 0; i < n_fad; ++i) {
seq[2*i] = ad[i]->seq[j];
seq[2*i+1] = ad[i]->seq[j+1];
}
s = arg_minimize_switches(ret->m, n_fad * 2, seq);
ret->seq[j] = s;
s = ret->seq[j+1] = (char*)calloc(ret->m, 1);
for (i = 0; i < ret->m; ++i)
s[i] = (seq[0][i] == seq[1][i])? seq[0][i] : 1 - ret->seq[j][i];
}
arg_data_print(ret);
// destroy
for (i = 0; i < n_fad; ++i) arg_data_destroy(ad[i]);
free(ad); free(seq);
arg_data_destroy(ret);
return 0;
}
// sample m integers from [0..n-1] without replacement; ret is of size m
void sample_no_rep(int n, int m, int *ret)
{
int i, j, k;
assert(m <= n);
for (i = n, j = m, k = 0; j > 0; --j) {
double p = 1.0, x = drand48();
while (x < p) p -= p * j / (i--);
ret[k++] = n - i - 1;
}
}
int main_mixphase(int argc, char *argv[])
{
int c, n_fuzzy = 0, *inds = 0, i, j;
double r_fuzzy = 0.5;
arg_data_t *ad;
srand48(time(0) ^ getpid());
while ((c = getopt(argc, argv, "n:")) >= 0) {
switch (c) {
case 'n':
r_fuzzy = atof(optarg);
if (r_fuzzy >= 1.0) n_fuzzy = (int)(r_fuzzy + .499);
break;
default: return 1;
}
}
if (argc == optind) {
fprintf(stderr, "Usage: fastARG mixphase [-n ratio|n] <in.fad>\n");
return 1;
}
ad = arg_data_read(argv[optind]);
if (n_fuzzy > ad->n/2) {
fprintf(stderr, "[main_mixphase] only %d individuals are in the input.\n", ad->n/2);
return 1;
}
if (n_fuzzy == 0) n_fuzzy = (int)(ad->n/2 * r_fuzzy + .499);
if (inds == 0) {
inds = (int*)calloc(n_fuzzy, sizeof(int));
sample_no_rep(ad->n/2, n_fuzzy, inds);
}
// mixphase: core loop
for (i = 0; i < n_fuzzy; ++i) {
char *s[2];
s[0] = ad->seq[inds[i]*2];
s[1] = ad->seq[inds[i]*2 + 1];
for (j = 0; j < ad->m; ++j)
if (s[0][j] != s[1][j] && s[0][j] < 2 && s[1][j] < 2)
s[0][j] = s[1][j] = 2;
}
arg_data_print(ad);
// free
free(inds);
arg_data_destroy(ad);
return 0;
}