-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_text_classification.py
475 lines (392 loc) · 20.2 KB
/
run_text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""
File: run_text_classification.py
Author: Lukas Galke
Email: [email protected]
Github: lgalke
Description: Run text classification experiments on TextGCN's datasets
"""
import csv
import itertools as it
import logging
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from joblib import Memory
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, AdamW, AutoTokenizer, BertConfig,
BertForSequenceClassification, BertModel,
BertTokenizer, DistilBertConfig,
DistilBertForSequenceClassification, DistilBertModel,
DistilBertTokenizer, get_linear_schedule_with_warmup,
RobertaConfig, RobertaForSequenceClassification, RobertaModel)
from sklearn.metrics import f1_score
from sklearn.feature_extraction.text import TfidfTransformer
from tokenization import build_tokenizer_for_word_embeddings
from data import load_data, load_word_vectors, shuffle_augment
from models import MLP, collate_for_mlp
try:
import wandb
WANDB = True
except ImportError:
print("WandB not installed, to track experiments: pip install wandb")
WANDB = False
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
USE_CUDA = torch.cuda.is_available()
CACHE_DIR = 'cache/textclf'
MEMORY = Memory(CACHE_DIR, verbose=2)
VALID_DATASETS = [ '20ng', 'R8', 'R52', 'ohsumed', 'mr'] + ['TREC', 'wiki']
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertModel),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaModel),
# 'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetModel),
# 'xlm': (XLMConfig, XLMForSequenceClassification, XLMModel),
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertModel)
}
def inverse_document_frequency(encoded_docs, vocab_size):
""" Returns IDF scores in shape [vocab_size] """
num_docs = len(encoded_docs)
counts = sp.dok_matrix((num_docs, vocab_size))
for i, doc in tqdm(enumerate(encoded_docs), desc="Computing IDF"):
for j in doc:
counts[i,j] += 1
tfidf = TfidfTransformer(use_idf=True, smooth_idf=True)
tfidf.fit(counts)
return torch.FloatTensor(tfidf.idf_)
def pad(seqs, with_token=0, to_length=None):
if to_length is None:
to_length = max(len(seq) for seq in seqs)
return [seq + (to_length - len(seq)) * [with_token] for seq in seqs]
def get_collate_for_transformer(pad_token_id):
""" Closure to include padding in collate function """
def _collate_for_transformer(examples):
docs, labels = list(zip(*examples))
input_ids = torch.tensor(pad(docs, with_token=pad_token_id))
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
attention_mask[input_ids == pad_token_id] = 0
labels = torch.tensor(labels)
token_type_ids = torch.zeros_like(input_ids)
return input_ids, attention_mask, token_type_ids, labels
return _collate_for_transformer
def train(args, train_data, model, tokenizer):
if args.model_type == 'mlp':
# if args.model_name_or_path is not None:
# # Embedding case, use optimized merging from tokenizer lib
# collate_fn = collate_encoding_for_mlp
# else:
# # Manual collate with offsets
collate_fn = collate_for_mlp
else:
collate_fn = get_collate_for_transformer(tokenizer.pad_token_id)
train_loader = torch.utils.data.DataLoader(train_data,
collate_fn=collate_fn,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=('cuda' in str(args.device)))
# len(train_loader) no of batches
t_total = len(train_loader) // args.gradient_accumulation_steps * args.epochs
optimizer = AdamW(model.parameters(), lr=args.learning_rate, eps=args.adam_epsilon)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
writer = SummaryWriter()
if args.ignore_position_ids:
print("Setting position ids to zero and ignoring grad")
if args.model_type == 'bert':
model.bert.embeddings.position_embeddings.weight.requires_grad = False
model.bert.embeddings.position_embeddings.weight.zero_()
else:
raise NotImplementedError("Ignore position ids only implemented for BERT")
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_data))
logger.info(" Num Epochs = %d", args.epochs)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Total train batch size (w. accumulation) = %d",
args.batch_size * args.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(args.epochs, desc="Epoch")
for epoch in train_iterator:
epoch_iterator = tqdm(train_loader, desc="Iteration")
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
if args.model_type == 'mlp':
# Batch: torch.tensor(flat_docs), torch.tensor(offsets), torch.tensor(labels)
outputs = model(batch[0], batch[1], batch[2])
else:
# Batch : input_ids, attention_mask, token_type_ids, labels
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[3]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids
if args.ignore_position_ids:
inputs['position_ids'] = torch.zeros(
inputs['input_ids'].shape[0], # bsz
inputs['input_ids'].shape[1], # len
device=inputs['input_ids'].device,
dtype=torch.long
)
outputs = model(**inputs)
loss = outputs[0]
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
global_step += 1
if WANDB:
wandb.log({'epoch': epoch,
'lr': scheduler.get_last_lr()[0],
'loss': loss})
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
# if args.evaluate_during_training:
# results = evaluate(args, dev_data, model, tokenizer)
# for key, value in results.items():
# tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
avg_loss = (tr_loss - logging_loss)/ args.logging_steps
writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
writer.add_scalar('loss', avg_loss, global_step)
logging_loss = tr_loss
writer.close()
return global_step, tr_loss / global_step
def evaluate(args, dev_or_test_data, model, tokenizer):
if args.model_type == 'mlp':
collate_fn = collate_for_mlp
else:
collate_fn = get_collate_for_transformer(tokenizer.pad_token_id)
data_loader = torch.utils.data.DataLoader(dev_or_test_data,
collate_fn=collate_fn,
num_workers=args.num_workers,
batch_size=args.test_batch_size,
pin_memory=('cuda' in str(args.device)),
shuffle=False)
all_logits = []
all_targets = []
nb_eval_steps, eval_loss = 0, 0.0
for batch in tqdm(data_loader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
if args.model_type == 'mlp':
# batch consist of (flat_inputs, lenghts, labels)
outputs = model(batch[0], batch[1], batch[2])
all_targets.append(batch[2].detach().cpu())
else:
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[3]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids
outputs = model(**inputs)
all_targets.append(inputs['labels'].detach().cpu())
nb_eval_steps += 1
# outputs [:2] should hold loss, logits
loss, logits = outputs[:2]
eval_loss += loss.mean().item()
all_logits.append(logits.detach().cpu())
logits = torch.cat(all_logits).numpy()
targets = torch.cat(all_targets).numpy()
eval_loss /= nb_eval_steps
preds = np.argmax(logits, axis=1)
acc = (preds == targets).sum() / targets.size
f1_micro = f1_score(targets, preds, average='micro')
f1_macro = f1_score(targets, preds, average='macro', zero_division=1)
if WANDB:
wandb.log({"test/acc": acc, "test/loss": eval_loss,
"test/f1_micro": f1_micro,
"test/f1_macro": f1_macro})
return acc, eval_loss
def run_xy_model(args):
print("Loading data...")
if args.model_type == "mlp" and args.model_name_or_path is not None:
print("Assuming to use word embeddings as both model_type=mlp and model_name_or_path are given")
print("Using word embeddings -> forcing wordlevel tokenizer")
vocab, embedding = load_word_vectors(args.model_name_or_path, unk_token="[UNK]")
tokenizer = build_tokenizer_for_word_embeddings(vocab)
else:
tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
embedding = None
print("Using tokenizer:", tokenizer)
do_truncate = not (args.stats_and_exit or args.model_type == 'mlp')
if args.stats_and_exit:
# We only compute dataset stats including length, so NOT truncate
max_length = None
elif args.model_type == 'mlp':
max_length = None
else:
max_length = 512 # should hold for all used transformer models?
enc_docs, enc_labels, train_mask, test_mask, label2index = load_data(args.dataset,
tokenizer,
max_length=max_length,
construct_textgraph=False,
n_jobs=args.num_workers)
print("Done")
lens = np.array([len(doc) for doc in enc_docs])
print("Min/max document length:", (lens.min(), lens.max()))
print("Mean document length: {:.4f} ({:.4f})".format(lens.mean(), lens.std()))
assert len(enc_docs) == len(enc_labels) == train_mask.size(0) == test_mask.size(0)
enc_docs_arr, enc_labels_arr = np.array(enc_docs, dtype='object'), np.array(enc_labels)
train_docs = enc_docs_arr[train_mask]
train_labels = enc_labels_arr[train_mask]
if args.shuffle_augment:
factor = float(args.shuffle_augment)
# Generate new permuted documents
new_docs, new_labels = shuffle_augment(list(train_docs),
list(train_labels),
factor=factor,
random_seed=args.seed)
# Convert to numpy
new_docs = np.array(new_docs, dtype='object')
new_labels = np.array(new_labels)
# Augment the training data
train_docs = np.concatenate([train_docs, new_docs])
train_labels = np.concatenate([train_labels, new_labels])
train_data = list(zip(train_docs, train_labels))
test_data = list(zip(enc_docs_arr[test_mask], enc_labels_arr[test_mask]))
print("N", len(enc_docs))
print("N train", len(train_data))
print("N test", len(test_data))
print("N classes", len(label2index))
if args.stats_and_exit:
print("Warning: length stats depend on tokenizer and max_length of model, chose MLP to avoid trimming before computing stats.")
exit(0)
if args.model_type != 'mlp':
config_class, model_class, __ = MODEL_CLASSES[args.model_type]
print("Loading", args.model_type)
print("Loading config")
config = config_class.from_pretrained(args.model_name_or_path,
num_labels=len(label2index),
cache_dir=CACHE_DIR)
print(config)
print("Loading model")
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
cache_dir=CACHE_DIR)
# This is a ForSequenceClassification Model
else:
print("Initializing MLP")
if embedding is not None:
# Vocab size given by embedding
vocab_size = None
else:
vocab_size = tokenizer.vocab_size
if args.bow_aggregation == 'tfidf':
print("Using IDF")
idf = inverse_document_frequency(enc_docs_arr[train_mask], tokenizer.vocab_size).to(args.device)
else:
idf = None
model = MLP(vocab_size, len(label2index),
num_hidden_layers=args.mlp_num_layers,
hidden_size=args.mlp_hidden_size,
embedding_dropout=args.mlp_embedding_dropout,
dropout=args.mlp_dropout,
mode=args.bow_aggregation,
pretrained_embedding=embedding,
idf=idf,
freeze=args.freeze_embedding)
model.to(args.device)
if WANDB:
wandb.watch(model, log_freq=args.logging_steps)
train(args, train_data, model, tokenizer)
acc, eval_loss = evaluate(args, test_data, model, tokenizer)
print(f"[{args.dataset}] Test accuracy: {acc:.4f}, Eval loss: {eval_loss}")
return acc
def main():
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('dataset', choices=VALID_DATASETS)
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type: either 'mlp' or 'distilbert'",
choices=["mlp", "distilbert", "bert", "roberta"])
parser.add_argument("--model_name_or_path", default=None, type=str,
help="Optional path to word embedding with model type 'mlp' OR huggingface shortcut name such as distilbert-base-uncased for model type 'distilbert'")
parser.add_argument("--results_file", default=None,
help="Store results to this results file")
## Training config
parser.add_argument("--epochs", type=int, default=20,
help="Number of training epochs")
parser.add_argument("--batch_size", type=int, default=16,
help="Batch size for training")
parser.add_argument("--test_batch_size", type=int, default=None,
help="Batch size for testing (defaults to train batch size)")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--unfreeze_embedding', dest="freeze_embedding", default=True,
action='store_false', help="Allow updating pretrained embeddings")
## Training Hyperparameters
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
## Other parameters
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--num_workers", default=4, type=int,
help="Number of workers")
parser.add_argument("--stats_and_exit", default=False,
action='store_true',
help="Print dataset stats and exit.")
# MLP Params
parser.add_argument("--mlp_num_layers", default=1, type=int, help="Number of hidden layers within MLP")
parser.add_argument("--mlp_hidden_size", default=1024, type=int, help="Hidden dimension for MLP")
parser.add_argument("--bow_aggregation", default="mean", choices=["mean", "sum", "tfidf"],
help="Aggregation for bag-of-words models (such as MLP)")
parser.add_argument("--mlp_embedding_dropout", default=0.5, type=float, help="Dropout for embedding / first hidden layer ")
parser.add_argument("--mlp_dropout", default=0.5, type=float, help="Dropout for all subsequent layers")
parser.add_argument("--comment", help="Some comment for the experiment")
parser.add_argument("--ignore_position_ids",
help="Use all zeros to pos ids",
default=False, action='store_true')
parser.add_argument("--seed", default=None,
help="Random seed for shuffle augment")
parser.add_argument("--shuffle_augment", type=float,
default=0, help="Factor for shuffle data augmentation")
##########################
args = parser.parse_args()
if args.model_type in ['mlp', 'textgcn']:
assert args.tokenizer_name or args.model_name_or_path, "Please supply tokenizer for MLP via --tokenizer_name or provide an embedding via --model_name_or_path"
else:
assert args.model_name_or_path, f"Please supply --model_name_or_path for {args.model_type}"
args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
args.test_batch_size = args.batch_size if args.test_batch_size is None else args.test_batch_size
if WANDB:
wandb.init(project="text-clf")
wandb.config.update(args)
acc = {
'mlp': run_xy_model,
'bert': run_xy_model,
'distilbert': run_xy_model,
'roberta': run_xy_model,
'xlnet': run_xy_model
}[args.model_type](args)
if args.results_file:
with open(args.results_file, 'a', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow([args.model_type,args.dataset,acc])
if __name__ == '__main__':
main()