-
Notifications
You must be signed in to change notification settings - Fork 2
/
ddmn_decoder.py
300 lines (245 loc) · 16 KB
/
ddmn_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file defines the decoder"""
import tensorflow as tf
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import math_ops
# Note: this function is based on tf.contrib.legacy_seq2seq_attention_decoder, which is now outdated.
# In the future, it would make more sense to write variants on the attention mechanism using the new seq2seq library for tensorflow 1.0: https://www.tensorflow.org/api_guides/python/contrib.seq2seq#Attention
def attention_decoder(decoder_inputs, initial_state, encoder_states,pre_key_encoder_states,pre_pre_key_encoder_states, enc_padding_mask, cell, initial_state_attention=False, pointer_gen=True, use_coverage=False, prev_coverage=None):
"""
Args:
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
initial_state: 2D Tensor [batch_size x cell.state_size].
encoder_states: 3D Tensor [batch_size x attn_length x attn_size].
enc_padding_mask: 2D Tensor [batch_size x attn_length] containing 1s and 0s; indicates which of the encoder locations are padding (0) or a real token (1).
cell: rnn_cell.RNNCell defining the cell function and size.
initial_state_attention:
Note that this attention decoder passes each decoder input through a linear layer with the previous step's context vector to get a modified version of the input. If initial_state_attention is False, on the first decoder step the "previous context vector" is just a zero vector. If initial_state_attention is True, we use initial_state to (re)calculate the previous step's context vector. We set this to False for train/eval mode (because we call attention_decoder once for all decoder steps) and True for decode mode (because we call attention_decoder once for each decoder step).
pointer_gen: boolean. If True, calculate the generation probability p_gen for each decoder step.
use_coverage: boolean. If True, use coverage mechanism.
prev_coverage:
If not None, a tensor with shape (batch_size, attn_length). The previous step's coverage vector. This is only not None in decode mode when using coverage.
Returns:
outputs: A list of the same length as decoder_inputs of 2D Tensors of
shape [batch_size x cell.output_size]. The output vectors.
state: The final state of the decoder. A tensor shape [batch_size x cell.state_size].
attn_dists: A list containing tensors of shape (batch_size,attn_length).
The attention distributions for each decoder step.
p_gens: List of length input_size, containing tensors of shape [batch_size, 1]. The values of p_gen for each decoder step. Empty list if pointer_gen=False.
coverage: Coverage vector on the last step computed. None if use_coverage=False.
"""
with variable_scope.variable_scope("attention_decoder") as scope:
batch_size = encoder_states.get_shape()[0].value # if this line fails, it's because the batch size isn't defined
attn_size = encoder_states.get_shape()[2].value # if this line fails, it's because the attention length isn't defined
with variable_scope.variable_scope('atten_gru'):
atten_gru = tf.contrib.rnn.GRUCell(attn_size)
# Reshape encoder_states (need to insert a dim)
encoder_states = tf.expand_dims(encoder_states, axis=2) # now is shape (batch_size, attn_len, 1, attn_size)
w_f = [variable_scope.get_variable("wf_{}".format(f), [attn_size, attn_size]) for f in range(3)]
b_f = [variable_scope.get_variable("bf_{}".format(f), [attn_size]) for f in range(3)]
w_a = [variable_scope.get_variable("wa_{}".format(a), [attn_size, attn_size]) for a in range(3)]
b_a = [variable_scope.get_variable("ba_{}".format(f), [attn_size]) for f in range(3)]
w_q = [variable_scope.get_variable("wq_{}".format(f), [attn_size, attn_size])for f in range(3) ]
b_q = [variable_scope.get_variable("bq_{}".format(f), [attn_size])for f in range(3)]
# To calculate attention, we calculate
# v^T tanh(W_h h_i + W_s s_t + b_attn)
# where h_i is an encoder state, and s_t a decoder state.
# attn_vec_size is the length of the vectors v, b_attn, (W_h h_i) and (W_s s_t).
# We set it to be equal to the size of the encoder states.
attention_vec_size = attn_size
# Get the weight matrix W_h and apply it to each encoder state to get (W_h h_i), the encoder features
W_h = [variable_scope.get_variable("W_h{}".format(a), [1, 1, attn_size, attention_vec_size]) for a in range(3)]
# encoder_features = nn_ops.conv2d(encoder_states, W_h, [1, 1, 1, 1], "SAME") # shape (batch_size,attn_length,1,attention_vec_size)
# Get the weight vectors v and w_c (w_c is for coverage)
v = [variable_scope.get_variable("v_{}".format(f), [attention_vec_size])for f in range(3)]
if use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = [variable_scope.get_variable("w_c{}".format(f), [1, 1, 1, attention_vec_size]) for f in range(3)]
if prev_coverage is not None: # for beam search mode with coverage
# reshape from (batch_size, attn_length) to (batch_size, attn_len, 1, 1)
prev_coverage = tf.expand_dims(tf.expand_dims(prev_coverage,2),3)
def attention(decoder_state, key_encoder_states, coverage=None):
"""Calculate the context vector and attention distribution from the decoder state.
Args:
decoder_state: state of the decoder
coverage: Optional. Previous timestep's coverage vector, shape (batch_size, attn_len, 1, 1).
Returns:
context_vector: weighted sum of encoder_states
attn_dist: attention distribution
coverage: new coverage vector. shape (batch_size, attn_len, 1, 1)
"""
with variable_scope.variable_scope("Attention"):
# Pass the decoder state through a linear layer (this is W_s s_t + b_attn in the paper)
def masked_attention(e, enc_padding_mask):
"""Take softmax of e then apply enc_padding_mask and re-normalize"""
attn_dist = nn_ops.softmax(e) # take softmax. shape (batch_size, attn_length)
attn_dist *= enc_padding_mask # apply mask
masked_sums = tf.reduce_sum(attn_dist, axis=1) # shape (batch_size)
return attn_dist / tf.reshape(masked_sums, [-1, 1]) # re-normalize
for i in range(3):
decoder_features = tf.matmul(decoder_state, w_q[i]) + b_q[i]
decoder_features = tf.expand_dims(tf.expand_dims(decoder_features, 1),
1) # reshape to (batch_size, 1, 1, attention_vec_size)
key_encoder_states = tf.expand_dims(key_encoder_states, axis=2)
key_encoder_features = nn_ops.conv2d(key_encoder_states, W_h[i], [1, 1, 1, 1], "SAME")
if use_coverage and coverage is not None: # non-first step of coverage
# Multiply coverage vector by w_c to get coverage_features.
coverage_features = nn_ops.conv2d(coverage, w_c[i], [1, 1, 1, 1],
"SAME") # c has shape (batch_size, attn_length, 1, attention_vec_size)
# Calculate v^T tanh(W_h h_i + W_s s_t + w_c c_i^t + b_attn)
e = math_ops.reduce_sum(
v[i] * math_ops.tanh(key_encoder_features + decoder_features + coverage_features),
[2, 3]) # shape (batch_size,attn_length)
# Calculate attention distribution
attn_dist = masked_attention(e, enc_padding_mask)
# Update coverage vector
if i==2:
coverage += array_ops.reshape(attn_dist, [batch_size, -1, 1, 1])
else:
# Calculate v^T tanh(W_h h_i + W_s s_t + b_attn)
e = math_ops.reduce_sum(v[i] * math_ops.tanh(key_encoder_features + decoder_features),
[2, 3]) # calculate e
# Calculate attention distribution
attn_dist = masked_attention(e, enc_padding_mask)
if use_coverage and i==2: # first step of training
coverage = tf.expand_dims(tf.expand_dims(attn_dist, 2), 2) # initialize coverage
# Calculate the context vector from attn_dist and encoder_states
context_vector = math_ops.reduce_sum(array_ops.reshape(attn_dist, [batch_size, -1, 1, 1]) * encoder_states,
[1, 2]) # shape (batch_size, attn_size).
context_vector = array_ops.reshape(context_vector, [-1, attn_size])
y=tf.concat(values=[context_vector,decoder_state],axis=1)
tmp_output, tmp_state = atten_gru(y, decoder_state) # tmp_state batch,attn_size
new_decoder_features = tf.matmul(tmp_state, w_q[i]) + b_q[i]
new_decoder_features = tf.expand_dims(tf.expand_dims(new_decoder_features, 1), 1)
if use_coverage and coverage is not None: # non-first step of coverage
# Multiply coverage vector by w_c to get coverage_features.
coverage_features = nn_ops.conv2d(coverage, w_c[i], [1, 1, 1, 1],
"SAME") # c has shape (batch_size, attn_length, 1, attention_vec_size)
# Calculate v^T tanh(W_h h_i + W_s s_t + w_c c_i^t + b_attn)
e = math_ops.reduce_sum(
v[i] * math_ops.tanh(key_encoder_features + new_decoder_features + coverage_features),
[2, 3]) # shape (batch_size,attn_length)
# Calculate attention distribution
k_attn_dist = masked_attention(e, enc_padding_mask)
# Update coverage vector
# coverage += array_ops.reshape(attn_dist, [batch_size, -1, 1, 1])
else:
# Calculate v^T tanh(W_h h_i + W_s s_t + b_attn)
e = math_ops.reduce_sum(v[i] * math_ops.tanh(key_encoder_features + new_decoder_features),
[2, 3]) # calculate e
# Calculate attention distribution
k_attn_dist = masked_attention(e, enc_padding_mask)
# if use_coverage: # first step of training
# coverage = tf.expand_dims(tf.expand_dims(attn_dist, 2), 2) # initialize coverage
f_t = tf.nn.sigmoid(tf.matmul(tmp_state, w_f[i]) + b_f[i])
use_attn_dist = tf.transpose(tf.expand_dims(k_attn_dist, axis=1), perm=[0, 2, 1])
use_f_t = tf.expand_dims(f_t, axis=1)
forget_memory = tf.matmul(use_attn_dist, use_f_t) # batch,attenlen,attn_size
key_encoder_states = tf.squeeze(key_encoder_states, axis=2)
temp_memory = key_encoder_states * (1 - forget_memory)
a_t = tf.nn.sigmoid(tf.matmul(tmp_state, w_a[i]) + b_a[i])
use_a_t = tf.expand_dims(a_t, axis=1)
add_memory = tf.matmul(use_attn_dist, use_a_t)
key_encoder_states = temp_memory + add_memory
return context_vector, attn_dist, coverage, key_encoder_states
outputs = []
attn_dists = []
p_gens = []
state = initial_state
coverage = prev_coverage # initialize coverage to None or whatever was passed in
context_vector = array_ops.zeros([batch_size, attn_size])
context_vector.set_shape([None, attn_size]) # Ensure the second shape of attention vectors is set.
key_encoder_states = pre_key_encoder_states
if initial_state_attention: # true in decode mode
# Re-calculate the context vector from the previous step so that we can pass it through a linear layer with this step's input to get a modified version of the input
context_vector, _, coverage, not_update_key_encoder_states = attention(initial_state,pre_pre_key_encoder_states, coverage) # in decode mode, this is what updates the coverage vector
for i, inp in enumerate(decoder_inputs):
tf.logging.info("Adding attention_decoder timestep %i of %i", i, len(decoder_inputs))
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
# Merge input and previous attentions into one vector x of the same size as inp
input_size = inp.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from input: %s" % inp.name)
x = linear([inp] + [context_vector], input_size, True)
# Run the decoder RNN cell. cell_output = decoder state
#outputs,(h_state,c_state)
cell_output, state = cell(x, state)
# Run the attention mechanism.
if i == 0 and initial_state_attention: # always true in decode mode
with variable_scope.variable_scope(variable_scope.get_variable_scope(), reuse=True): # you need this because you've already run the initial attention(...) call
context_vector, attn_dist, _ , key_encoder_states= attention(state,key_encoder_states, coverage) # don't allow coverage to update
else:
context_vector, attn_dist, coverage, key_encoder_states = attention(state,key_encoder_states, coverage)
attn_dists.append(attn_dist)
# Calculate p_gen
if pointer_gen:
with tf.variable_scope('calculate_pgen'):
p_gen = linear([context_vector, state, x], 1, True) # Tensor shape (batch_size, 1)
p_gen = tf.sigmoid(p_gen)
p_gens.append(p_gen)
# Concatenate the cell_output (= decoder state) and the context vector, and pass them through a linear layer
# This is V[s_t, h*_t] + b in the paper
with variable_scope.variable_scope("AttnOutputProjection"):
output = linear([cell_output] + [context_vector], cell.output_size, True)
outputs.append(output)
# If using coverage, reshape it
if coverage is not None:
coverage = array_ops.reshape(coverage, [batch_size, -1])
return outputs, state, attn_dists, p_gens, coverage, key_encoder_states
def linear(args, output_size, bias, bias_start=0.0, scope=None):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
if not isinstance(args, (list, tuple)):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes))
else:
total_arg_size += shape[1]
# Now the computation.
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [total_arg_size, output_size])
if len(args) == 1:
res = tf.matmul(args[0], matrix)
else:
res = tf.matmul(tf.concat(axis=1, values=args), matrix)
if not bias:
return res
bias_term = tf.get_variable(
"Bias", [output_size], initializer=tf.constant_initializer(bias_start))
return res + bias_term