You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* implements detach module using the structure of clone module
* detach/clone progress
* tests for clone and detach, tests should be moved to different folder but I was encountering import errors
* Force detach_module to work in-place.
* Move tests to proper folder.
* line addition and renaming vars
* testing if gradient update works
* have one optimizer_step function
* update getting_started to contain intro to l2l and meta-learning
* update mkdocs and pydocmd config files to restore equation rendering and fix equations in getting_started tutorial
* Add new implementation of Ant/HalfCheetah envs.
* Add HumanoidForwardBackward.
* Add HumanoidDirection env.
* Add particles, remove unused stuff.
* Add environment License
* Clean up RL examples.
* Remove mkdocs.yml from source.
* Add docs for clone and detach module.
* Fix docs.
* Add detach implementation.
* Add magic box doc, remove top-level import algos.
* Add docs for MAML.
* Add docs for MetaSGD.
* Started doc on task generator.
* Add documentation for l2l.data.
* Fix equations in docs.
* Add travis
* Add more docs.
* Add integration tests.
* Update README with Travis.
* Add requirements.txt
* Fix task generator out-of-range sampling.
* Remove tqdm from tests
* Add pandas dependency.
* Add requests dependency.
* Better camera for Ant and HalfCheetah envs.
* Removed unused environments.
* Minor fix promp.
* Clean up readme.
* Clean up readme.
* Add demo gif.
* Update readme.
* Improve docs.
* Task generator with unified API, compatible with torchvision, torchtext, torchaudio, and cherry.
26
+
* Provides standardized meta-learning tasks for vision (Omniglot, mini-ImageNet), reinforcement learning (Particles, Mujoco), and even text (news classification).
27
+
* 100% compatible with PyTorch -- use your own modules, datasets, or libraries!
7
28
8
29
# Installation
9
30
@@ -14,7 +35,7 @@ pip install learn2learn
14
35
# API Demo
15
36
16
37
The following is an example of using the high-level MAML implementation on MNIST.
17
-
For more algorithms and lower-level utilities, please refer to [the documentation](http://learn2learn.net/docs/learn2learn/) or the [examples](https://github.com/learnables/learn2learn/tree/master/examples).
38
+
For more algorithms and lower-level utilities, please refer to the [documentation](http://learn2learn.net/docs/learn2learn/) or the [examples](https://github.com/learnables/learn2learn/tree/master/examples).
@@ -41,7 +62,7 @@ for iteration in range(num_iterations):
41
62
42
63
# Compute evaluation loss
43
64
evaluation_task = task_generator.sample(shots=1,
44
-
classes=adaptation_task.sampled_classes)
65
+
task=adaptation_task.sampled_task)
45
66
evaluation_error = compute_loss(evaluation_task)
46
67
47
68
# Meta-update the model parameters
@@ -50,6 +71,6 @@ for iteration in range(num_iterations):
50
71
opt.step()
51
72
~~~
52
73
53
-
# Acknowledgements
74
+
###Acknowledgements
54
75
55
76
1. The RL environments are adapted from Tristan Deleu's [implementations](https://github.com/tristandeleu/pytorch-maml-rl) and from the ProMP [repository](https://github.com/jonasrothfuss/ProMP/). Both shared with permission, under the MIT License.
Copy file name to clipboardExpand all lines: docs/source/tutorials/getting_started.md
+3
Original file line number
Diff line number
Diff line change
@@ -30,7 +30,9 @@ For more information about specific meta-learning algorithms, please refer to th
30
30
appropriate tutorial.
31
31
32
32
# How to Use L2L
33
+
33
34
## Installing
35
+
34
36
A pip package is available, updated periodically. Use the command:
35
37
36
38
```pip install learn2learn```
@@ -48,6 +50,7 @@ encounter a problem, feel free to an open an [issue](https://github.com/learnabl
48
50
look into it.
49
51
50
52
## Source Files
53
+
51
54
Examples of learn2learn in action can be found [here](https://github.com/learnables/learn2learn/tree/master/examples).
52
55
The source code for algorithm implementations is also available [here](https://github.com/learnables/learn2learn/tree/master/learn2learn/algorithms).
0 commit comments