|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +""" |
| 4 | +Example for running few-shot algorithms with the PyTorch Lightning wrappers. |
| 5 | +""" |
| 6 | + |
| 7 | +import learn2learn as l2l |
| 8 | +import pytorch_lightning as pl |
| 9 | +from argparse import ArgumentParser |
| 10 | +from learn2learn.algorithms import ( |
| 11 | + LightningPrototypicalNetworks, |
| 12 | + LightningMetaOptNet, |
| 13 | + LightningMAML, |
| 14 | + LightningANIL, |
| 15 | +) |
| 16 | +from learn2learn.utils.lightning import EpisodicBatcher |
| 17 | + |
| 18 | + |
| 19 | +def main(): |
| 20 | + parser = ArgumentParser(conflict_handler="resolve", add_help=True) |
| 21 | + # add model and trainer specific args |
| 22 | + parser = LightningPrototypicalNetworks.add_model_specific_args(parser) |
| 23 | + parser = LightningMetaOptNet.add_model_specific_args(parser) |
| 24 | + parser = LightningMAML.add_model_specific_args(parser) |
| 25 | + parser = LightningANIL.add_model_specific_args(parser) |
| 26 | + parser = pl.Trainer.add_argparse_args(parser) |
| 27 | + |
| 28 | + # add script-specific args |
| 29 | + parser.add_argument("--algorithm", type=str, default="protonet") |
| 30 | + parser.add_argument("--dataset", type=str, default="mini-imagenet") |
| 31 | + parser.add_argument("--root", type=str, default="~/data") |
| 32 | + parser.add_argument("--meta_batch_size", type=int, default=16) |
| 33 | + parser.add_argument("--seed", type=int, default=42) |
| 34 | + args = parser.parse_args() |
| 35 | + dict_args = vars(args) |
| 36 | + |
| 37 | + pl.seed_everything(args.seed) |
| 38 | + |
| 39 | + # Create tasksets using the benchmark interface |
| 40 | + if False and args.dataset in ["mini-imagenet", "tiered-imagenet"]: |
| 41 | + data_augmentation = "lee2019" |
| 42 | + else: |
| 43 | + data_augmentation = "normalize" |
| 44 | + tasksets = l2l.vision.benchmarks.get_tasksets( |
| 45 | + name=args.dataset, |
| 46 | + train_samples=args.train_queries + args.train_shots, |
| 47 | + train_ways=args.train_ways, |
| 48 | + test_samples=args.test_queries + args.test_shots, |
| 49 | + test_ways=args.test_ways, |
| 50 | + root=args.root, |
| 51 | + data_augmentation=data_augmentation, |
| 52 | + ) |
| 53 | + episodic_data = EpisodicBatcher( |
| 54 | + tasksets.train, |
| 55 | + tasksets.validation, |
| 56 | + tasksets.test, |
| 57 | + epoch_length=args.meta_batch_size * 10, |
| 58 | + ) |
| 59 | + |
| 60 | + # init model |
| 61 | + if args.dataset in ["mini-imagenet", "tiered-imagenet"]: |
| 62 | + model = l2l.vision.models.ResNet12(output_size=args.train_ways) |
| 63 | + else: # CIFAR-FS, FC100 |
| 64 | + model = l2l.vision.models.CNN4( |
| 65 | + output_size=args.train_ways, |
| 66 | + hidden_size=64, |
| 67 | + embedding_size=64*4, |
| 68 | + ) |
| 69 | + features = model.features |
| 70 | + classifier = model.classifier |
| 71 | + |
| 72 | + # init algorithm |
| 73 | + if args.algorithm == "protonet": |
| 74 | + algorithm = LightningPrototypicalNetworks(features=features, **dict_args) |
| 75 | + elif args.algorithm == "maml": |
| 76 | + algorithm = LightningMAML(model, **dict_args) |
| 77 | + elif args.algorithm == "anil": |
| 78 | + algorithm = LightningANIL(features, classifier, **dict_args) |
| 79 | + elif args.algorithm == "metaoptnet": |
| 80 | + algorithm = LightningMetaOptNet(features, **dict_args) |
| 81 | + |
| 82 | + trainer = pl.Trainer.from_argparse_args( |
| 83 | + args, |
| 84 | + gpus=1, |
| 85 | + accumulate_grad_batches=args.meta_batch_size, |
| 86 | + callbacks=[ |
| 87 | + l2l.utils.lightning.TrackTestAccuracyCallback(), |
| 88 | + l2l.utils.lightning.NoLeaveProgressBar(), |
| 89 | + ], |
| 90 | + ) |
| 91 | + trainer.fit(model=algorithm, datamodule=episodic_data) |
| 92 | + trainer.test(ckpt_path="best") |
| 93 | + |
| 94 | + |
| 95 | +if __name__ == "__main__": |
| 96 | + main() |
0 commit comments