We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
なぜ前件が偽なら真になるのか? 2変数真理関数が、含意っぽい性質を満たしていれば必ずそうなることを証明する問題を紹介したい
The text was updated successfully, but these errors were encountered:
これは「論理学をつくる」という本に載っている例
Sorry, something went wrong.
ここまで公理を足したけどたぶんまだ足りない
opaque Imp (P Q : Prop) : Prop /-- 推移的 -/ axiom imp_transitive {P Q R : Prop} (hpq : Imp P Q) (hqr : Imp Q R) : Imp P R /-- 反射的ではない -/ axiom imp_not_reflexive : ¬ (∀ (P Q : Prop), Imp P Q ↔ Imp Q P) /-- モーダスポネンス -/ axiom modus_ponens {P Q : Prop} (hP : P) (h : Imp P Q) : Q /-- 前件が真なときは Imp P Q は Q に一致する -/ axiom imp_of_true (Q : Prop) : Imp True Q = Q
Successfully merging a pull request may close this issue.
なぜ前件が偽なら真になるのか?
2変数真理関数が、含意っぽい性質を満たしていれば必ずそうなることを証明する問題を紹介したい
The text was updated successfully, but these errors were encountered: