-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperfect_comp_sample_1.xml
91 lines (86 loc) · 21.5 KB
/
perfect_comp_sample_1.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/perfect_comp_sample_1/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q1 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following market equilibrium plot under perfect competition, which of the following is/are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAACOlBMVEUAAAAAADoAAGYAAP8AOjoAOmYAOpAAOv8AZrYAZv8zMzM6AAA6ADo6AP86OgA6Ojo6OmY6ZmY6ZpA6ZrY6kLY6kNs6kP9NTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmAP9mOgBmOjpmZjpmZmZmZpBmkJBmkLZmtttmtv9uTU1ubk1ubo5ujqtujshuq8huq+SOTU2OTW6Obk2Obm6Oq6uOyOSOyP+QOgCQOjqQOv+QZjqQZmaQZpCQkGaQkLaQkP+QtraQttuQtv+Q27aQ29uQ2/+ZmZmlKiqlKlSlKnmlVJ2leb+rbk2rjm6ryOSr5OSr5P+0Kiq0KlS0Knm0VFS0nd+2ZgC2Zjq2ZpC2Zv+2kDq2kGa2kJC2tma2tpC2tra2ttu229u22/+2/9u2///EKirEKlTEeXnEnZ3Ev//Ijk3Ijm7Iq27Iq47I5P/I///TVCrTv53T3//bkDrbkGbbkP/btmbbtpDbtrbbttvb27bb29vb2//b///heSrh353h///kq27kyI7kyKvk5Mjk/8jk///xnVTx/9/x////AAD/ADr/AGb/OgD/Ojr/Omb/OpD/ZgD/Zjr/Zmb/Zrb/kDr/kGb/kJD/kNv/pQD/pTr/pWb/tAD/tJD/tmb/tpD/trb/ttv/tv//v3n/xAD/xGb/xLb/yI7/0zr/05D/09v/25D/27b/29v/2///353/4Wb/4ZD/4f//5Kv/5Mj/8ZD/8f///7b//7///8j//9v//9///+T///+jEZTwAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2di38lxZXf7yDDYiYYDIEWq5kBjNdGywwzw2PI4uxmnWRG67UGyMND1iTB67B5aGBgdxbwGotYBsRGayc4azZoDUoCxCKeATuRHFni9v+WrurH7We9uqpOne7z+3xmdLvvvfrd6j5fnTpV1X0nMYlE6tQE+gOQSCGLACGRBCJASCSBCBASSSAChEQSiAAhkQQiQEgkgQgQEkkgAoREEogAIZEEIkBIJIEIEBJJIAKERBKIACGRBCJASCSBCBASSSAChEQSiAAhkQSCBGQCTOc5WHto/z72GxsbkPYWpGpPgIzWv4f9xkZ/QpC0ngAZrb+5/QYB4kUECE57K3xgaT0BMlp/Q/sNO3xgaT0BMlp/M3tbfGBpPQEyWn8je2t8YGk9ATJafxN7a3igaT0BMlp/A3uLfGBpPQEyWn99e5t8YGk9ATJaf117e+WHkb1lESByESAa2rDMB5bWEyCj9dext44HmtYTIKP1V7d3gAea1hMgo/VXtneBB5rWEyCj9Ve1d4IHmtYTIKP1V7R3xAeS1qMDZHNz05o/AaIgV3zgaD06QDYJEK/2bsoPZXuHIkDkIkBkcsgHgtZzESBwCj5EXPIRfutTESBwCj1EXOIRfuszIQTEGiEEiFBu+Qi99bmQAWI1hRAgIjnmI/DWFyJA4BRyiDgtP+T27kWAyEWAdMnJ4it1ex8iQOQiQNrlA49wW18TRkBsEUKAtMkPHqG2viFsgNhMIQRIizzhEWjrmyJA4BRiiPjCI8zWt4gAgVOAIeKPjxBb3yYCBE7hhYhHPgJsfatQAmKJEAKkJp98hNf6dqEDxGIKIUAq8laet9t7FgEiFwFSlmc+Amt9pwgQOAUVIp7xCKz13SJA4BRQiHjHI6jWi4QTEDuEECC5APgIqPVC4QPEXgohQFL5rj5q9jDyDMj+6Sf030SABGEPgkcwrZfJCiCvPRhF0X2PFdv7p45mj6bnF6Po+KWWjZgACSJEYNJHHEjr5bIByMUo1cl8x0p0NH2wf4o/ccfzjQ3uTYBA24PhEUTrVWQBkO0ouv+N048/G82n3azpSpQDshIduRTvLkdH1usb3NscECuEECCAfATQeiVZAGQtwYHVICtpCnntgSgHZGeRp4v9UwydykbqbWhOgFiyB8QjgNaryQIgK9GZUpG+FkUnfpABslb8PFnbSL0JEFB7UD7AW6/4OosZJNtaeCzpdB3ljxk6THy7spF6EyCQguUDuvUeAdlZjE68XhnmzRiYLme9qZ3FI+uVjcx7MmdkSIDYEDAf0Eff5yjW9iIf5V2f7VAA5Aamubm5c/riVbrB+0gzZeU59McAlEdA4ulzDJH5h7sBueP5ykbmPUkAMUkillLIiDMI5PBVphFlkJjNpD/0QJQVGTpdLDNCCJCegscD/OgDLDW5WMxwKAMSzxkhYmkmZKyAZHggiVBge4uAzPpOGqNY5oT0/MQx+CmC8s/TB5IIBbbvDwif+WsHJJ/yyOZBTlZ2ZsO8cyaIECDGmlUfSCIU2L4/INPlJOIZIGv1LpbiTLoBIQSIqUrVB5IIBba3uRarXqQzdhaK5VeVjdQ7M9dPInaKkPEBUhm8QhKhwPY2V/OeyHcUZcZueQHvbvdqXm1ECBAD1cZ2kUQosL2960EWZteDzOrw3fPJM8fXWzbiylITXUIIEH3V5z6QRCiwfTBXFOoRYqWPNS5AGnMfSCIU2D4YQAwI0XesalSANOcGkUQosH1AN23QIoQA0VPL3DmSCAW2DwgQLUJs9LFGBEjb2hIkEQpsHxIgWqU6AaKu9qWJSCIU2D4oQHQIIUCU1bF0F0mEAtuHBYhGN8tCH2skgHQt3UUSocD2oQGijggBoqTule1IIhTYPjxAVAkhQFQkuPIDSYQC2wcIiGIlQoDIJbxwEEmEAtuHCIhaEulfhAweEPGFg0giFNg+TECUkggBIpbsunMkEQpsHyggKogQICLJb8uAJEJdiN0VR/GlwQIiJ6R3H2vIgCjctmSkgGymwg+IvBIhQDqlctuSUQKyWUjxDSEDIiOEAOmS0m19RgjI5uawAJEQ0rePNVhA1G57NTZAqnQMoYsVqxDSw3+ogCjeFm5cgNRzx0AAEZfqBEiLlO8qOiJAWrpWQwFESEjPPtYgAVG/6+5YANlswWNAgAi7WQRIXRp33R0FIO10aNgjAESACAFSldZNqQcPyGYnHRr2KADpJIQAqUiLD+jmO7YX0qFhjwOQrkqkXxEyMEDUqw8n9rpyaS+jQ8MeCSBdSYQAKaSJB3jzndkr0KFhjwaQ9iRCgGTSTR+W7Q3kxl4JDh17PIC0ItKrjzUcQAzwAG++A3tlOjTsMQHSRYip/2AAMeIDuvmW7dU6Vvr2qABpqUQIEONvHBwQILp0aNgjA6RBSJ8+1kAAMeQDuvnW7A3o0LDHBkgrIYb+wwDElA/o5tuxN6NDwx4dIHVCxg6IMR/QzbdgbwpHvLS0hA2Q5CMvKb6tWqr36GMNABCz8tyafR/1tTelYykVNkCMCRk1IH34gG5+H3vjjlWOh3qwYQSk2s0yJwQ9IH3wAG++sb05HSU8Bg5IGZHRAtIPD/Dmm9lbo2PIXSwuC4TgBqQvH9DNN7DvQUdczx2DB2RWiYwSkF7VR397C9K07wNHW9dq+IDMkogpIYgB6Y8HePN17K3RMQuxMQCSJ5HRAWIhffSxtyNlewd0aNijBiRHZGSAWMEDvPlq9pbKjmZwjQSQUhLRfy9OQOykD2N7a1KwtwZHS2SNBZBZEtF/J0pAbOEB3nyZvbWOVXtYjQcQc0IwAmKPD+jmi+x7lR3ddYeqfVkDAETjq3GrwgeIRTzAm99p34+OxoSHrn1NwQBigRBdRLABYq36MLO3rHb7nnSor7UaFyBmhCADxDIf0M1vsbdHhzySRgZIvGlACC5ALOMB3vy6vT04lOJodIAYEIIKEOt8QDe/Ym+t7FCOorEBYkIIJkDs8wHd/MLeYsdKI4RGCIg2IYgAccAHdPNT+750aHetqvZyDQaQGSHKiKABxHZ5rmnvRucs0KFVljfslTQoQDQJwQKIGz6gm9+fDv3rZ0saHyDp/U10EMEBiCM8YJvfH44eyYNrrIDoTKujAMQVHoDNt5k6jINmhIBUCVFABAEgztKHmr19We1Y9QmZEQOinETCB8QhHhDND4aOeJyA6BISPCBO+fDd/Dod+vYm84GdwgeIzRSihkjggLjFw2/zW3KHrr1FOHTsBwVIkxAhIkED4rL6ULC3qfaOlZ69XTo07IcHiDohIQPing9Pze8sOzTsrdOhYT8sQKr3epcREjAg7vHw0XxhUa5s74AODfuBAaJFSLiA+ODDdfNlQ1Zq9i6Sh4b9wAGREBIsIF74cNp8hQFdBXvLdbmuPdfQANEhJFRA/PDhrvlq0x0Se5tDugb2hQYOiLBUDxMQD+W5yL6n1OcChfaO6ZDZlzQ4QDQICRIQb3w4aL46HWJ753SI7SsaPCACRAIEpA2PDV2Z27dq00Tm9ksWZLH1wwOk5Ws9OwgJD5C2ANfPJopvUAZEz12Jjk77SpSbxoPK+wiQstqTSGiAtCcA/d6WXUB0FxWqvr7Fvp4EjMOBABGqLcW3ERIYIB39o7EA0tJHIkCq2zZTiAohYQHSVT+MApD2CoIAqW5bTSHN89RAJCRAusvrwQPSXV8TINVtu4B0ETJDJBxARMNPgwZEPPpEgFS3rQHS9a2FNUKCAUQ4PMt3X9n4Ifuxt/EW+/F28uK/+oQ9OvjR+/nr9tI9sStAPtr8ef5gc/Nv/x93f/f/Fu7pnlgLENnYbL7rzaVvxPGnL3w93fg637O09Ad/xjY/feE/5C//9b/9s9obxfZKcgHI/ukn1LydAdL5vZ4VQkIBRDx7kQHCw/8KA+TgR4yStzcYGm//ZPbCrbfK71C3lyg7jAfv/q+fpj/fixkkDI2PfjZ72S/fq75ebi+fucj2fvrCv/va9xMo2H8ciE9f+MP/xCBhaLz59dnrP2C7S28U2it+TPuAvPZgFEX3PZZu7LKN45fSjen5xdlG7BQQJUICAUQyu5cB8tfvJD/e/usEgh+nILz9VjlrxKVs4gSQX/70VxyKD9/jmx+9V84acSmbKAKiMq2XPfPB1/7jP0lY+MU/ZQniF//s+/GrKQhvJj9mWSMuZZOQAbkYpTrJNnYW+eN5nlH2T/GNO54vvF0DIiEkDEBks98ZIP+D5Y7//DdvJd2solfFIUl2bPzVf2ek5CnECSAfvnfwbpIw9jaLXhWHJNmx+bf/h5GSpxAlQNQmvbMnX/3Dv+Tdq1eTjhbLGL/+k6JXxSFJdiz9wZ8yfPIUEjAg21F0/xunH3+WQzFdjo5cineT/9eTp1bKG9zbISAqhAQBiHR1SAbI//wvyf9vJQxcmWWNgx+9w/j4SfKP7cyfcQHIXlKBfJT0sX41yxoH7/6c7f9Z8o/tzJ+RA6KSPNIX8v9//SffSLtXLPxZkkhTCdenL3yDvYBBw0qS/JmAAVmLjvIaZIWlkJ1Fni72TzFaKhupt0tAOjtZs1I9AEAUVk9lgLz/9vvx1jsMkB8WT/FkssW2txgbeW6xCkh2DH/J4Eiyx69+OnNnyYTtj3/J2MhzixgQeeFRfjH//4MEjl+wPhbrTrEeFvuXiSeTDzg9DJA8twQMyEp0Zlakbye0xDyRnEnRYVpLe1+xa0DkhMADorK6MAdk6yfxj9+vZhBOBO9m8Z08ocQ2AZkdwg9/xlLGz8oZhBPBu1l8J08osRAQ2ahV4/X8/1e/ng9hJX0sVpOXMggngnez+E6eUOKgAckzCFclaTB0mDJqYueAdBNi+J2GtqW2+DYHZO+tvR+yMiPPE0mB7haQ8sLcvfThT4s8kRTomoDU6VC5opD9lxQYTGkf6y9ZGZ7niSSj4AMkKctPvJ4DUtQgR9njrGu1s5gXIV4A6ThfARCiuDY9ByT+r3/zE16Hv52NYv3QVRerZeX6R7xnxfpYnAi+Q6OL1TYfqApIOrqb9bH+lPeu3sxGsb72fXxdrHh7kY/ypgxM0zGtE+tNQG5gOlcVO3jnLCo9we3PZUnEpp2WsvSh8EJ20Bggb2+8wwEpzYP8+B222SjS+3yu1ks7+ABW+qM0D/Lhz9NdtSK98SsrcOh8Fhbn2fxg1sf659lGMQ/yajaFWCvSFX65YjzbnweZPscQmX+YPd55gAOycKkCSD7QW88g1lOIMIfAJhH1S5sKQFj8pyO5P85n0vnmwY82Nv4b23y79zBvGxzs36+y7PARg+DDfCadD+wevLu5+b/ZZpZaGhmkq+xQzCA8dSR6kwHwwVI2wPvqUjaTzgd2P31haenfMzbeDH+Yl2n/9EMJGGfS/tY6SyMJGwpdLPuABEuIxqV/olcVE4UMnp4Tha2pIxYV3cVEIUseHROF3UW5ahdLrGKikCUPFBOFcbrU5CKb7ljJBqxWkiIEBhBBoc6OERAiGR5q50gY7vlSk1l2kb1jprJ9Gxn5U92/IV9qwgBpW2oiHLKyA0ix1IQBgmOpSQoI60hVmZCPYrkARETIOZjhrGLwShEQUbznWSMBxHyxooAO/nS3e5Y1EkCaixVlI7pK98WSvybPGgkgRTYJ+JJbPqLbDkg+/9E9D+IEEAEh7Bj5J2Q2uKt4jjQvSte8aYOEjriYKlRU+mKFCQ+V1puFQ8g3bZguJ+HPAFmrd7EUZtIdAtJ6jtNj5JmQUvWhPFEpuYtJTaq/tb3kUHmlSLHqfKBS65eMpPKbwddisQ7VdjQr0hk7C+K1WG4A6SYkO0ZeCSnHMOBMfkdB3l/qkQq8jgF8Ne8JtrFWXtq7K1vN6wiQTkLyY+SRkMrfeKgQcUWH3t/xsQKSXg+ykF0P8jq/OCS7BGT3PLs4ZL14pS9A4o44KI6Rt0Kk2gcCCZEAckeq0QJifkWhM0A6CJkdIz+E1GsE/yHiBg0m7RqAAFHw9gZIOyGlY+SDkEYN7TNEWvKGRXtdOGK79ibCeNMGh4C0FiKVY+SckOYQk68Q6ehVWbM3oMOmvZlQAuKZkOoxcktI2wislxDprjns2JskD4v2xiJAGmoQUjtGLglpnaFwHCINNIR/H0ykX3hYte8lAqSpeozUj5GzQqRjBs9liCgMVvW015+bs2rfVwRIi2qx0jhGc24Q6ZrgdhYicjj62velo6e9BREgbaoGTMsxcoBI9wIQJyGikDp62uvNB1q3tyQCpF3lqGk9RpYREa2Psh8iimj0sbcCh7m9NREgXZoFT8cxskmIcP2gzRBRTxy97G3RYWhvUQRIp4oI6jxG1ggRL6+1EyKywapO6dvbo8PI3qoIEIGyKOo+RpYIkSw/7x8ixnAY2FulQ9/etggQkaSxZIUQ2eUZPUOkFx2a9ha7Vib2DkSAiCWLKAuESC9fMg6Rvmho2lury83s3YgAkUgWWX1LdYXL+4xCxAYaOvZ2xnSN7Z0JLyC+CJEh0o8Qlctf9UPEGhyK9q7gULR3KZyA+EwhsTTOehCidHW4TojY6VXp2DtLHWr2rkWAyHUudoSI4s0T1M6RAzQU7B3TIbN3LwJELnaMJEFnRIjqzUUk56iNDFtwSOyd0yG29yECRK7GjaFaXqNfiajffEd0jlzTIbD3QYfA3pMQA+KNkPwYiSNQkxCNe1N1niPXaIjs/dDRae9NSAHxmkJmx0gYijpJROvebS3nyA8anfaekkeXvU8RIHJVjpEoKFUR0by1YdnfJxkt9rH7USuJvW8RIHLVj1F3eKoRoslHswbySEdcbb5vOmICRMU7MEBiASMKhKjj0cGETzriUvMB6IgJEBXvDkB8naP2Y9QRrlJClPgIA41UafNh6IgJEBXvNnNwQJjaQldCSCcfUia8k5HpnI/pQKE9pAgQuYTHqIuQjqCu8KHIBBgaXGCpIxMBIvcOGZC4GedzTUQMpebvUsB0xASIinfggGSySoiBvwOB0xETICreXYB4Omlap6iMiDkT5v72FAIdMQGi4t1qHigguUq1ugET/f37Kgw6YgJExRsjIPXxXs3Jwf7+fVRJHkgiFNieANFWPq3OPr7u5LkNf1PV63IkEQpsT4AYiPEx4eqBh98QaRm1QhKhwPYEiIkqgAD466ljxgNJhALbhwlI+MvlJplU8JjUZcFfWd3zgUgiFNgeFpAsWKo/l5ba91v/ea7P+6uxLmxm1w73ISKcLUcSocD24WUQf32sPqdoQ52R5gsm/f3lWhLS4dxeKiT2BIiRNjJA0tEsMSQggEjgcG2vICT2BIiJ+OAVxyObEhGlEgBA5HQ4tVcSEvtAAfFCiPEpKiY/qpOGHZB4B0SFDof2ikJiHyAg3lKI4SkqTw42rsVtgcQvIIp0uLJXFxJ7AkRX1cnztqvVa/0tj4Aoda1yIYlQYHsCRFONtSUdVxrOIPEFiEJdXhGSCAW2J0C0VMEj//idF+OmkHgBRDam2yIkEQpsHyogPgjRP0XV9FF8fNHl6nkiuXI4eXRb5Y3WQkQfDqv2ZkJiHyIgvlKI7imqL92dfXzhfbP4y/aO3RvHl695pvxGOyFiRoc1e2MhsSdAlNWoPsofX0AIf9nHq8l/V/7O2fIb+4eIQcdqJiQRCmxPgChKduVHdxLJWrmVdLEO2QSkFx397fsKiT0BoiSVC6O6EMm6WAkcFjNIXzp62lsQEvtgAQnq9slqFw52EMJbuXXdavKfnQyyZIGOHvaWhMQ+SEA8pRDlU6R8XW0rISkgLIEctgGIFTjM7a0JiT0BIlcXHy0fv42Q9GUXkgrkH7GhrLgXILboMLS3KCT2BIhUnfmj7eO3rTzpeqN2iFikw8TerpDYhwuIe0LUjlF3/6r14zcJsQWIVTr07W0LiX2YgPhJISrHSFSet3/85gLfxvsMALGbPLTtHQiJPQEilMl9r+qE1BfA69+0wVpdXhGSCAW2DxiQAL5G0vC2cG0XibTc6EHtHLmhQ9nemZDYBwqIlxQiO0Y97poo/T4qFX/H3+GBJEKB7QmQTvW5q6gSIRJ/p3TI7V0LiT0B0iGF6kN47IQLfOX+rumQ2HsQEvuQAXFNiOgYqaQPybGTEtLp74EOkb0fIbEPFRAfKaT7GKkNXsmOnSyJtPt7gaPb3puQ2OsCcvWpL9yU6PO/9z3dT9TiHSogitWH/NiJEWnx90ZHu71PIbHXAuTgqcOzwcpDX17V/1hVbxkgjkOk4xj1+s6PmoSE1Pz9dKw67X0Lib0GIByPm3/r6VcSPf27n0sQ+dKqyUebeQvNoQCxiAeTgJCyv286YjQRCmyvDsjVuybXfrW84+Vkx7d1PlPDO0RALPMhIqTwB6AjRhOhwPbKgOwda9Jw9a7sLgRmChAQ63jEAkJSfxg6YjQRCmyvDMjBX7Tt/YtV1fe3eUsBcRsvjWOkWX2oHrsuQs75Lcpb7CGFxD7YYV4PKaR+jHSrc+Vj11GqQ9IRo4lQYHsCpJB290r92DUJAetYzYQkQoHtdQE5ePnum2666Zavyl+p4C0HxONMmX75oXPsKoQEQEeMJkKB7TUB2conQq49q/2Rmt4hAeKiPK8oRyQMOmI0EQpsrwfIlcOTa3//lVdeeepzk17jV5m3xNx1BJWPkXM+ckICoSNGE6HA9nqAXJhcv8ofHCSP9D5Qm3cwgNicPO/U0lwZkRhNiIzbXgsQfnvAVFcOd6eQ/dNPqHnLzB0TUhwjD3ykVOSE1PxhRPYq0gSkoKL0sKbXHoyi6L7H0o3pxcUo+s2Hs43zycbxSzPvMAAxxkP52M06VZXhLCQhMm573S7WvdmjK4fZvTRbdDFKdZJt7J5KN06wjf10447nC2+puQ9AzLOH2rGrFeUlQpCEyLjt9QC5mvexrt51qH0YazuK7n/j9OPPRvNJN2u6HC1ciqfpRrwSHbkU7y5HR9ZzbyVA3BHCjlGf3pXCsWsZsZolESQhMm57veXuX/nCZHLzl57+l8mPa+9h+uJq7SVr0VFeg6ywFLKdpQu2M95Z5Bv7p+bzCiUAQHoVH0o9xJYRq5wQJCEybnvNGqR2A5vmYO9KdKYo0pMEcmb2DKeE/zyZe8vNnRJyzuHgrnC2IyMESYiM214zg9xTU2cGYdo/Nas3UnSYtjNQ4AFxhod8LlDptkCOhSRCge1tr8XaWYxOvJ4BsrN4ZP0Hvx1FC2xIa7o8P9ubeat24i1/xlSuxnbVZsoVbnriWkgiFNje+mLF7UU+yssYSFA4Xwxp1QG5gemcVDzK5C/TV8aH5d9apUP0yowQy/4kZdkGZO/vt1w9ePAvmpMh0+cYIvMP8xGt6MR6PL3IRrFKgOQdL5UM4mqk10b6qH98pdQxE3QOQfInHNhe/YKpRxqXoB882T4Zsn/6oQeipOLYzmZDkvLjqGkXy1Efy0r3qvLxNelgAiYESYQC26t3sQ6+OZnc8sez7ZfvnkxuXW17JSvSL0ZH1ncWS0z0AsQ2IVn3qudvKT6+WtnR0DlYQpBEKLC9Tg1y9dHJZPKZz7PRqy+wZe+3dNyygQHCOlJFZ4o/MBrFip0QkuUPO4AY0hGzcwRKCJIIBbbXK9I/frK4MdahW9tuHcenAXNAiqSxzWbP8/kPrXkQJtuEFMNXFk6ROR0x94cczEISocD22qNYHz/91D33/N63Om6sOF1Owp8BssaYWMmSBZ9WN5lJT2WXkNnwbt9T1IuOzB+QECQRCmxve5i3WIvFOlQ7i2zxbjqKlS3M0luLlckiIeXZj16nqCccM38wRJBEKLC99XmQfDUvX8DLJ0WiaJ5XH7v6q3lzWSOkMnplfoos0FHyByIESYQC29u/qwm/HmQhux5kl10Cct+lfCN55vh68Up1QCwN9tYmzw1OUYWMSc/PVPjDJBEkEQps7+K2P9auKCzJBiH1yQ/dU7RUU99jV/KHIARJhALbYwHEAiGNyUGtU1SnY6n/sSv7AxCCJEKB7QO+cVxVfcuQlrlz9VPUQkdsFxAARJBEKLA9GkD6EdK6dFfxGNmpyFtU8/ddiSCJUGB7PID0IaR9abvsGLXnDXuq+3smBEmEAttrA/Lyozfd/Ezr0l5taQISG4dpx9JE4TFyTUerv1dCkEQosL1mjF65i19nu3dscpv2R2p669JpGKpdS3e7j5EHOtr9fRKCJEKB7fViNAHjln997Jpn2Mree+Uvl3lrpy+jcO1c2t5yjBpkiOzsFumpPBKCJEKB7bVvPZrdMu6yh1uPtkmfkO5LP+rHSDdvuADEIyFIIhTYXu+mDY8cOpsBIrr1qKpMANElRHTleeUYGfSqnADir1RHEqHA9vq3Hk0B6b71qLqMAInVAziW3JnhXPUXatccbgDxRgiSCAW21795NXAGqQS05JWSG5cYk2FJnefIDyJIIhTYXrcGuS0FxMvXH3RJNaKFeEDTEQvPkQ9CkEQosL32F+jc+t1j1/yb79416bg3r45MAVG7VEmUPgKgIxafIw9JBEmEAtvrzoPkl9we6j/K2wOQWM5IHY82JsDQSCU+R84JQRKhwPbaX+L51E3szg1f6rjkVku9AGESBL2S+n7+nu+XnCPXhCCJUGB7RGuxWtWHDmu3/TGU1N8tIkgiFNgeOyCxGSP8jcED4rYSQRKhwPZmJ/ngFaO31b2t0anMREXhA+KUECQRCmyveZKv/j0+/VH6Ns8esgdIWep3FQU+RWr+7ghBEqHA9trDvBkgsMO8AmncdRcFIO4IQRKhwPa6E4X53aqhFivKpHNXahyAOCMESYQC25t+TzrcWiyhtO7ajgQQV4QgiVBge/vfk64u64BI1l7VhaBIT+WmVEcSocD2msvdi8uktorOlrlsA6LJBx5A3BCCJEKB7fVO8tZk8nfZHPrHTx0GuaJQJF08MAHiBBEkEQpsr3mSnyy+ABrimnSRtPHABYiDSgRJhALb657kq4+y5YqHur47RyV8J4sAABX/SURBVEsWAdFPHzH4KdL1t51EkEQosP0AlprEpl85iAwQ20kESYQC2w8CEDM+oE+Rgb9VQpBEKLC9+rfcfuWLqwdfuWemL66afbKStx1ADPEAP0VG/hYRQRKhwPbq35N+jN8vbqZA5kGMqo9UuIr0TPYqESQRCmyvnkG+863Vg+88PdO3Vs0+WcnbAiA9+MAJiD1CkEQosD3yGqQHHlgBsdbNQhKhwPZ6J/nJW2xcalt49wakFx9oAbFECJIIBbY3XYtlQ70B6ccH9Cnq4W+FECQRCmyPGZCefECfoj7+NghBEqHA9noxenly/ar2R+n27gVIn/I8FWJAbJTqSCIU2F5vNe93Hp1MbgpiHmSjPx/Qp6if/1xvRJBEKLC9ZhcrkHkQG3ggLtJT9UUESYQC22tmkCDmQezggR6QvoggiVBge4TzIJbwGAAg/UoRJBEKbK91kj+2kDbK3kYRZguPQQDSZzwLSYQC22uc5KvsCzwn19m4EiTzNokwe3xAnyJL/saEIIlQYHv1GGU3dr/5bhvFeeFtAIhFPqBPkS1/U0KQRCiwvXqMpvfEOnjExsW2mbc2INbKD66BAGJaiCCJUGB79dW8j6T3xLJxO5PcWxcQu3xAnyJ7/maEIIlQYHut60HKPy1IFxDLfAyjSOcyIgRJhALbIwLEMh5DAsSoEEESocD2eACxzsegADEgBEmEAtujAcQ+H8MCRJ8QJBEKbI8EENvlB9dgivRUuoUIkggFtscBiBM+oE+RdX9NQpBEKLC9BiCTqjyu5nWCB/gpcuCvRQiSCAW2RwCIIzzAT5ETfw1EkEQosL16GfDxK1X1v32DGiDO+BhYkZ5JnRAkEQpsH/pydzfVR6pBAqJeiSCJUGD7wAFxiMdQAVFOIkgiFNg+aEBcpo94uIAoJhEkEQpsHzAgjvEAP0Uu/VUQQRKhwPbhAuKcD+hT5NRfgRAkEQpsHywgzvEAP0WO/aWEIIlQYPtQAfHAB/Qpcu0vIwRJhALbBwqIDz6GW6RnkhCCJEKB7cMExAsfgwdEQgiSCAW2DxEQ9+V5qsEDIi7VkUQosH2AgPjiYwSACAlBEqHA9uEB4gsP8FPkx7+bECQRCmwfGiD+8AA/Rb78uxBBEqHA9oEB4pMP6FPkzb+DECQRCmwfFCDeqo9UYwGkoxJBEqHA9iEB4hePURTpudoIQRKhwPbhAOI5fcSjAqQtiSCJUGD7UADxj8e4AGlBBEmEAtsHAggEHyMDpEEIkggFtg8DEAg8wE+Rf/8qIUgiFNjeBSD7p59Q887NYfiAPkUA/hVCkEQosL19QF57MIqi+x6b7dhZPLLOH0zPL0bR8Usz78wciA/oUwThXyYESYQC21sH5GKU6mS+Y7ocpYDsn+JP3PF84Z2aQ/EBfYpA/EuEIIlQYHvbgGxH0f1vnH782Wg+72atRRkgK9GRS/FujkucAQJSnqcaWZGealaqI4lQYHvbgKxFR3kNspKnkJ3FDJCdRZ479k8V6DBAAPkYJyAzQpBEKLC9bUBWojOVIj3pYD2U1iAMnZj/zHtfCSCAeIwVkKKbhSRCge1dZZBcK9HRrEhn6DBtZ6AwQCDxGC8gfb5c3Z5GCkjSozrx+gyQ7aR7lQIyXc66VsWgVgaI5Q+goTEW6ZkCIGSkgMTbi3yUN2WAFxztgNzAlPBxjgShrBKB/hiAggIknj7HEJl/mD3mpXoDkHygN8kg1t11NOIMEsMnkbFmkJjNpD/0QMQqjjU+fiXoYjkw19C4ATH8dnVrGjUgT8QXefHBmRgsIHiL9MweFBHw1qvJFSCsI7UWFUp6VW2jWA7MNTR6QEAJgW+9kizHKK/K2wHJ5z8q8yCgIkAgK5EQWq8gyzE6XU7CnwGyNltRkvWp2mfSIUWAxICEBNF6uZytxco6VHEBSMLOQstaLECNvEjP7KEICaP1UjlbzXui2JNX5bsdq3nBRIBwARESSOtlcnQ9yELb9SC755Nnjq8XTxAgYdjDlOqhtF6iIK4oBBIBkgmEkGBaLxYBYq5BFOmpAAgJqPUihXHTBhgRICV5RySo1neLADHXoADxTkhYre8UAWKuYQHiuxIJrPVdIkBG69+090pIcK1vFwEyWv8We59JJLzWt4oAGa1/q70/QkJsfYsIkNH6t9t7SyJBtr4pAsRcAyvSc3kiJNDW10WAmGuggHgiJNTW10SAmGuogPhBJNzWV0SAmGu4gPioRAJufVkEyGj9hfbuCQm59SURIKP1l9i7JiTs1hciQEbrL7N3TEjgrc9FgIzWX2rvlpDQW5+JADHXgIv0VE4JCb71qQgQcw0eEKelevit5yJAzDV8QFwSgqD1TASIuUYAiENEULSeABmxv6q9I0KQtJ4AGa2/sr2bJIKk9QTIaP017F0QgqT1BMho/XXsHRCCpPUEiLlGUaTnso4IktYTIOYaFSDWKxEkrSdAzDUuQGwTgqT1BIi5RgaI5W4WktYTIKP1N7C3SQiS1hMgo/U3sbdICJLWEyCj9Teyt0cIktYTIKP1N7O3VqojaT0BYq7RFelctghB0noCxFzjBMQWIkhaT4CYa6yA2KlEkLSeADHXeAGxkUSQtJ4AGa1/P/vehCBpPQEyWv+e9n0JQdJ6AmS0/r3t+yGCpPUEyGj9+9v3qkSQtJ4AMdeIi/RMfQhB0noCxFwESJ9uFpLWEyDmIkDiHoQgaT0BYi4ChMmUECStJ0BG62/L3pAQJK0nQEbrb83erFRH0noCZLT+9uyNCEHSegJktP427Q0QQdJ6AsRcVKSXpE0IktYTIOYiQMrSTSJIWk+AmIsAqUqPECStJ0DMRYDUpEUIktYTIKP1d2GvgQiS1hMgo/V3Yq9eiSBpPQEyWn839sqEIGk9ATJaf1f2ioQgaT0BYi4q0tulRgiS1hMg5iJAOqRECJLWEyDmIkC6pEIIktYTIOYiQDqlUKojaT0BMlp/p/ZzUkSQtJ4AGa2/Y3sZIkhaT4CM1t+5vRgRJK0nQEbr78FeRAiS1hMg5qIiXa5uQpC0ngAxFwGioE5CkLSeADEXAaKiLkKQtJ4AMRcBoqSOQgRJ6wmQ0fp7s28nBEnrCZDR+vuzbyUESesJkNH6+7RvIQRJ6wmQ0fp7tW8SgqT1BIi5qEjXUIMQJK0nQMxFgOioXoggab2LGN0//YSaNwECKd/2taVZSFpvP0ZfezCKovsem23MH7+UbkzPL0ZRvhETIEhCxJ4qiCBpvfUYvRilOlnamOcZZf8U37jj+cIbOSDI/SHsS4ggab3tGN2OovvfOP34sxyK7Wj+4TjeXU6hWImOXGIbR9ZzbwJkfPYFIUhabztG16KjvAZZSVLIdDk6w/YlqSP5ubPIMdk/NZ9XKATIKO0zQpC03naMriQs5EX6/qmsO8Vo4egwraW9r5gAQRIi1pUSgqT1rjJIRRyQlTSdJP2uo7k3ckCoSDeU8u1JHQoKkJ3F6MTrNUB4r2q6nHWtdhbzIoQAARWgvfL9Sd0JbBRre5GP8q6XdvHOVR2QG5jOodYE+gPgVUYI5EdQjGf7f8SnzzFE2PBVpm0+olUCJB/opQwCKlB78BwCO5P+0ANRVnGwlDLPHg6wi4XcH9gemBDopSYX8+mOtWyakAAJzR/aHpYQaEDyjtTFKJ/2GN4oFnJ/cHtQQoAA4QNWM0CmK9FCvrIkn/+geZBA/OHtIQsRIECmy0n4M0DWeBdrZbauZIAz6VSk97WX3Z7Usb2KnK3FYh2qtRIfjJ2FYa3FIkD624MhAr6a90SxfJfpaPLM7tBW8xIgNuyBEAG+HmSBXQ+yHVUAiXfPJ4+Oz3IKAQKqYOxBCIEexVLyRg4Icv+A7AEIIUDkIkCCsfdPCN20QS4CJBx774QQIHIRIAHZ+y5ECBC5qEgPyd4zIQSIXARIUPZ+CSFA5CJAArP3SQgBIhcBEpq9R0IIELmoSA/O3h8hBIhcBEh49t4KEQJELgIkQHtfhBAgchEgQdr7IYQAkYuK9EDtfSBCgMhFgIRq74EQAkQuAiRYe/eVCAEiFwESsL1rQggQuahID9necRIhQOQiQMK2d4oIASIXARK4vUtCCBC5CJDg7d0RQoDIRUV6+PbOCCFA5CJAENi7IoQAkYsAwWDviBACRC4CBIW9m1KdAJGLinQc9k4IIUDkIkCw2DsghACRiwAJ2X6up3ra5yJARusftn3vhCF5PwEiFxXpAdv37lARIL1FgARs37/iEP8GAkQuAiRgewKEAAk7QoHtCRD8gCD3D9ueACFAwo5QYPs0vH+Hj9h+VusXvz/3TOk3GNoXIkBG6x+2fQbI7fz/31jV+MUEiC0RIAHblwGJ77xX4xcTILZERXrA9hVAXmSdLNbdeib+5MZ/eOPc3O2fJP8l1LAfc7dnOxlFd87N/QMCxJIIkIDtK4C8n/SxfieB5MXfWP3kxuTxi3P8v2d4akl+ZjuT7dsZIwSIHREgAdtXAZl7Ju043XnvJzfyxMH/O/vJapz+zLb5i14kQCyJAAnYvp5BXkyXICZ9q7Ochey/99nOs/n2i6ya/+RGAsSOqEgP2L4CyB99Nn4xG8mqAnLn3Nk0gxAgDkSABGxfH8V6P0GBqQIIq03YM8U2613RKJYtESAB2zfmQdh/JRYyIFgCKe2887NUpNsTARKwfXkm/fbi8dlaF+uP2D5Wuec7aZjXoqhID9ie1mIRIGFHKLB9/wumCJC+IkACtqcrCgmQsCMU2L7vNemy9xMgclGRHrI93dWEACF7a1KCwsSeABmt/7Ds1fKGvj0BMlr/gdlrEkKAyEVF+rDstQghQOQiQAZmr0MIASIXATI0ew1CCBC5CJDB2asTQoDIRUX68OyVS3UCRC4CZID2qoQQIHIRIIO0p5l0WyJABmqvQggBIhcV6UO1V0giBIhcBMhw7aWEECByESADtpcRQoDIRYAM2l6MCAEiFxXpw7YXViIEiFwEyMDtRYQQIHIRIIO37yaEAJGLABm+fSchBIhcVKSPwL6LEAJELgJkDPYdhBAgchEgo7BvL9UJELkIkHHYtxJCgMhFRfpY7FsQIUDkIkDGY98ghACRiwAZkX09iRAgchEgo7KvEhIMIPunn+j0Rg4IFem47CuEBALIaw9GUXTfY+nG9PxiFB2/NPMmQCA1QvsSImEAcjFKdZJt7J/ij+94vvAmQCA1RvtZJRIEINtRdP8bpx9/Nppn3ayV6MileHc5OrKeexMgkBqlfUFIEICsRUd5DbLCUsjOIs8d+6fm86IEOyDI/UdqnxESBCAr0ZlZkc5oSX+ezL0JELL3r5SQIADJMwgXo4VpOwOFABlrhELb69zj2i0gO4vRidczQKbLWddqZzEvQiYkEpgUY9jtH/HtRT7Ky4CoA3IDE+whAraH9h+5vWIIO+7lTJ9jiMw/XAGkGOhV/ZCOBGwP7U/2KvIwk/7QA1FSfrR0sbAco4H6k72KvCw1uRgdWSdAQvMnexV5AYT3qpqjWCRS8HIJCJ8TLADJ5z9m8yAkUvByCch0OWGBAbLGlpc0Z9JJpODlZy0W610luCxU12KRSMHLz2reE2xjt76al0QKXj6uB1nIrgfZPZ9sHM/yR/3iEM9iH2wezp6rNJ7nW9OLydH/zYeB3ONdFhZAR3//1NHskVIIQl1R2Lg4xK+y1AZaDk3heptZMk8zu3/tLAIe/ZV8FFUtBKEAaVwc4lXbfHI/sYfs761FUICk5eD0WaAQZX8ZoE7+dCXKAVELQaAFtbBDWskZ4nMyyd+QMwD2qdifUSBAtrM/DGswU1KAJ/+1B6IcEMVPAQRI8+IQn9o/lWWOFbg5mQTSh4BqkPzvA5SyqWKAj5Ek7RM/KEIv/ymMASBAAplWBwQk6QpDFenF3wcgwWWQtYXHipBTDEEYQNoWZgEIcNJyO+leQTWe+f7gt2eji75V1CBHIdyL/KUWgqMGBKgPHmdoAgJyvnS3Gf+apoOIJ4AGaI7yz4AFEMBsvw03zJvdxgJqDI8HZxKmQO3feYADsgAyEdIERBiC4IDAZZDtxXmoWpUvToMEJE0dK1CjWJB8YssgYICsweWPnUVuDdfFgj36K6B8ogAkgFEssP5FzEcbc0H0MItOBUwHF/ivI4pRLPCLQ6Yr0QJc8QMMSBGh2yAzlYEAohiCo5xJ58sM4Bfdg/UvV4o/oiB/noLoYgU+kw58cchaCHzAAZJUyccvwY1ibYMOouWAKIYg1M0NQS8OydZxRsW6HBjBjVBsZ8tpgUbx8i4mSP4qag61EAS7+2fl4hDP2o5GDkhy9BNE7gO7HOZ1/rUxMPazolwpBIFvj0sihS0ChEQSiAAhkQQiQEgkgQgQEkkgAoREEogAIZEEIkBIJIEIEBJJIAIkAL189+HJ5DO3fk/jLQdP3Zr8f3lyW/6wVReuW61sXzl8r9knHK8IEHDt3ZV/b95t6m/amlwfZ4CkD9tfVOfhwjXPGH7KsYoAgdbescmhL6/G8dVHJ5POVNBQiYpOQPaONZ5o2UUSigCB1oVJ3g/aOtz4i98pFUAuHzqrtI8kEAECrCuHZ72ey5yVC2lX63Ia9y/fnfS9PvOlZH/yxL0vfW4yueXb8cEjrEd2PetiZQ+3Mswuz2jZO5aR9+eHJ9eezTC6cphSiJYIEGBdLlUee8fY3/cKIE9m5Ql7fGFyE398zTNNQPaOcc6SrXvrv/kCf9M9KSAHj1AK0RIBAqtyRGdslAHZmhz6avL4pUlKzuT61fgl3hFrFOkX+O/JOEl/c4rC1mTy5fjqI5MstVzWGQogESDASpNGrst1QLLHKUZZtXJhRkUJkPL/2W9OWUl/xd6x7JnuMS9SmwgQWJX+5MdVKIpq4uPv/O5dkxSQ64snGoCkv+jCLB9lVUlOYP7ryjUPSS4CBFaSDBJfzSdJ7q33verzIIyNMm5FVZ7uyjNHlUiSTAQIrCQ1yJXDk8mhm3/rjx+RA8J+lPtPl7sAoSpdRwQIsISjWAk+SVk+q0FEgLBR3VIPKwckzxgEiJkIEGDlf+GfvPV7zXmQPJqTElsKSHzh0D9+pNR9Krip1iDUxdITAQKtdGyKLTi5J51JT0OZJY8iurcmzfHfBiBbk8+XZwGvHE7nCdN38V+X7iZAdESAQGvvrnQt1kuHs9WKpYmLtIt18M1JCyAs/DNAUhISxspzHHmqSMqY2+KDJycFRjTMqyMCBFwHj+aredNZwXRu/Jp/lXLAdd036+O/rHq/bpUDkj7k7yuXF8Wc+WX+K26iiUIjESAB6LuP8sGq3380i/Tk57XfTv/Uv3zXZPKZL6dZojL+++eHc0DSh3G+lKvQVo7CyyxHbdFSEyMRICHp6t19/rzXkkOxWJGLFiuaiQAZjBrJ4XJ5iiWfTqQEoicCZDB6qV5+V1JIviCFEoieCJCB6MJk0kgO5UtuszW/NMarKQJkIPpmUog3dpZu2rCVjn3RTRs0RYCQSAIRICSSQAQIiSQQAUIiCUSAkEgCESAkkkAECIkkEAFCIglEgJBIAv1/HxeRCshfv5kAAAAASUVORK5CYII=</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. The intersection of marginal cost and demand defines the competitive equilibrium. </li>
<li> True. The short run equilbrium price is equal to $70.00 </li>
<li> True. The equilibrium quantity is equal to zero because price would be below average cost </li>
<li> False. The consumer surplus is equal to $45.00 </li>
<li> True. The producer surplus is equal to $45.00 </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="25" format="html">
<text><![CDATA[<p>
Point a is the equilibrium of this market under perfect competition.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The intersection of marginal cost and demand defines the competitive equilibrium.
</p>]]></text>
</feedback>
</answer>
<answer fraction="25" format="html">
<text><![CDATA[<p>
The short run equilibrium price in the market is equal to $70
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The short run equilbrium price is equal to $70.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="25" format="html">
<text><![CDATA[<p>
In the long run, the equilibrium quantity is zero.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The equilibrium quantity is equal to zero because price would be below average cost
</p>]]></text>
</feedback>
</answer>
<answer fraction="-50" format="html">
<text><![CDATA[<p>
The consumer surplus in the short run equlibrium under perfect competition is $105.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The consumer surplus is equal to $45.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="25" format="html">
<text><![CDATA[<p>
The producer surplus in the short run equlibrium under perfect competition is $45.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The producer surplus is equal to $45.00
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>