-
Notifications
You must be signed in to change notification settings - Fork 1
/
monopoly_sample_1.xml
91 lines (86 loc) · 26.8 KB
/
monopoly_sample_1.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/monopoly_sample_1/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q2 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of market demand and cost curves, which of the following is/are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAACtVBMVEUAAAAAADoAAGYAAP8AOjoAOmYAOpAAOv8AZrYAZv8zMzM6AAA6ADo6AGY6AP86OgA6Ojo6OmY6ZmY6ZpA6ZrY6kLY6kNs6kP9NTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmAP9mOgBmOjpmZjpmZmZmZpBmkJBmkLZmtttmtv9uTU1ubk1ubm5ubo5ujqtujshuq8huq+SOTU2OTW6Obk2Obm6Oq6uOq8iOq+SOyOSOyP+QOgCQOjqQOv+QZjqQZmaQZpCQkGaQkLaQkP+QtraQttuQtv+Q27aQ29uQ2/+ZmZmgIPCgIPKgIPWgTPegdPqlKiqlKlSlKnmlVJ2leb+rbk2rbm6rjm6ryOSr5OSr5P+xIPCxIPKxTPexmfy0Kiq0KlS0Knm0VFS0nd+2ZgC2Zjq2ZpC2Zv+2kDq2kGa2kJC2tma2tpC2tra2ttu229u22/+2/9u2///BIPDBIPLBIPXBTPfBdPXBmffBvPrBvPzBvP/EKirEKlTEeXnEnZ3Ev//Ijk3Ijm7Iq27Iq47IyKvI5P/I///RTPDRTPLRTPXRmfXRvPfR3v/TVCrTv53T3//bkDrbkGbbkP/btmbbtpDbtrbbttvb27bb29vb2//b///hdPDhdPLheSrh353h///kq27kyI7kyKvk5Mjk/8jk///wmfLwvPXw//rw///xnVTx/9/x////AAD/ADr/AGb/OgD/Ojr/Omb/OpD/ZgD/Zjr/Zmb/Zrb/kDr/kGb/kJD/kNv/pQD/pTr/pWb/tAD/tJD/tmb/tpD/trb/ttv/tv//vPX/v3n/xAD/xGb/xLb/yI7/0zr/05D/09v/25D/27b/29v/2///3vf/353/4Wb/4ZD/4f//5Kv/5Mj/5OT/8ZD/8f///7b//7///8j//9v//9///+T///r///z///8MxiHUAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2djb8dx1nfj63EGIsmDkmTveFKioMh8QHp1o4qkFxModDWV5RcIEKuQ9MX5BK3DVDTQtvQ0iOMoKUEhONAME1zbfemJVQkbVJiGpFEbe2kuS7yC2l1oUI3J+zf0Z3ZmX2dl2dmdnZm9jy/z0c6Z/ec5zyzu/O9zzwzszuzHIVCSTULXQAUKmYhICiUQggICqUQAoJCKYSAoFAKISAolEIICAqlEAKCQimEgKBQCiEgKJRCCAgKpRACgkIphICgUAohICiUQggICqUQAoJCKYSAoFAKISAolEIhAZm5Ot8Mah7a3qv7S5cuhXTv3x5qjoAka+/T/aVLWkJW5OwhIMnae3R/CQHhQkCStffmHoJH8KNHQACKtYaNY+/J/SUYH6GPHgEBKM4aNpa9H/dQPkIfPQICUJQ1bDR7L+6heAQ/egQEoBhr2Hj2PtzD+Qh99AgIQBHWsBHtPbg34CP00SMgAMVXw8a0H969CR+hjx4BASi6Gjaq/dDuwem5H/cj2yMg3s1D2w/s3pCP0EePgAAUVw0b235Y94Z4BD96BASgqGrY6PZDujfGI/jRIyAARVTDAtgP5960dTWw+yD2CIh389D2g7m34iP00SMgAMVSw8LYD+XeCo/gR58YIDfe9qC5EQISg3tLPkIffVKAPPXnsyw7+kC1feOew+zd8uw8y45dEGzkCEgUxbflI/TRpwTI+azU3XzHImOA3LiHfvDGn+9tUN8ISGj3dunHYO4D2o8IyG6W/bl//7a//rPZWtnMWi4yDsgiO3Qh3zuTHdrpblDfCEhg9w58hD76hADZLnAgOciiDCFPHc84INfmNFzcuIeg09oofSMgYd278BH66BMCZJGdaiTp21m28SQDZLt6vbuzUfpGQIK6d8Ej+NEnBAiPIGxr/YGi0VWyQNAhotutjdI3AhLSvRsfoY8+IUCuzbONp1vdvIyB5RnWmro2P7TT2mC+Z6ctXV6+fJm8ICAOcuQj9NEnBEi+O6e9vDv1DgAgtxGdPn1g00IFH5dt7FCVWPoRuhgBNSIg+fJRgsjaSTkgb/z51gbzPTtdEGLh7zJGEEdzp/Tc3X0E9qOPpJ84nrEkw6SJZUcIAuJo7o5H8KNPDpAH8/PVCIcZIAeMEbnMCEFArMTwwLMH0YCA1G0ncC/WaQdCcgTETjx84NmDyB0QOvInBoQPebBxkLtbO2k3LyfEEBEExNq8zj7w7EHkDsjyTFHjCSDb3SYWYCT9tB0hrI2Fl9hYjewDzx5EQ87F6ibphJ31avpVa6P0XTivCTFCBAGxMm91XuHZg2jI2bwbfEeVZuw1J/DuCWfz1oCYIIKAWJh3+nbx7EE03P0g6/X9IHUevne2+OTYjmAj51NNrAhBQMzNu2MfePYgiuCOQgJInpsRUiYheIkN1Bv7wLMHUQSAWBOCl9hA/bFBPHsQxfDQhhIQM0IQEDNzwdg5nj2IYgDEhhDaxsJLDJVobgmePYiiAaQmBIYIAgI3F09NxLMHURSA8BBiQggCAjaXTN3FswdRHIBUhMCbWQgI1Fw2dRfPHkSxAQJGhM/oddBKXGL5zHYEBKJIAOkTokUEAQF8R3VjFAICUUyAmBGCgOi/orxxEAGBKBZAmiEE1sxyb2NN/hKrbxxEQCCKBhA7Qpz8T/0Sa26sRUAgihQQCCEIiFq6G88REIjiAURIiAoRBEQl/XNLVhgQgyGCyAAxIcQ5CUn5EuvMAc/1WVFALl82mqYUESCdEAIjxMV/qpcYYA557tVKAnK5EtAgJkC6hOgSEQREJtBzr1YQkMuXpwWIhhDXNlaKlxhkDnsu3KoB0qYjxSaWFSEO/pO7xEBz4HMTVwuQbuxIFxARIRJEEBCBwI/dXSFABE2rNAExJAQB6QvMx8oAclmAx4QAUTWzHJOQZC6xgTkYjxUBREyHgfvIABESIkVkEwFpywCPFQDkspQOA/exAaIipIcIAtISvHXlxX1c9ko6DNzHCQiQkE23Nlbkl9jU3JCPKQOio8PAfXSAiEOIuJm16Zamx3yJzc0N8ZguIAA6DNzHB4gBIQhILWM+pgkICA4T9xECAidk060fK85LbGduzsf0AIGFDkP3CQHST0Q23YZC4rvEQl0y1bDuPZkPbm9Ch4H7GAEBE7IigBj+LJSQSQFiRoeB+ygB6c/JYuoQshKAmC9Gu3KAGNNh4N4HINBHvcsBkRLSTkQ23QbTI7rECiEgGnsLOgzcDw8IXU3nKFtNZ6/YWPuWnXJjeXaeZccu1L4tAGkRQg4SAbG1mAQgNsHDyP3ggPD12OhStk+W79fpqms3hEuwSQQiBAFxsUgfEMO8vNbW1lYoQKoVPcuFbbNDF/Ll+XLdzgXZ6C7iyVUUeav5O7I8PW8mIhwQS0IiuMQAISBi2dKxVSoUINvZYZqDLEgIWTAYFmT9W+Ey0LVEhEh8VISsDiBXL32MvFy/9Any8sylS5d+5yXybv/jz/LvXS/35KsAiNGIR0tblYAGQwNCWOBJ+vIMWxiaLuq5zVb23C5bX7kGEBUhvJlFz7E9IUkBQqv/VQLI/scJJc9cepb8/6n6i1c+0bQYyr0vc3t7ezoaeAQDhEcQouUZFiyuzYtIsmjSUvq2BqSZiawIIL/76eLlmd8tIPhkCcIzn2hGjbwRTaYMyGB0hGpiFWnHxtMiQNq0lL6VgIAIIYhYE5IUIP+DxI7//HufKJpZz1afEUiKHZd+578TUngImSwgDnTk3dgRrBdrd057eXfI+wULFiQX6QJyG9FmLZo4tUTz9E2pGCGb5Zx3+fdSFwPkf/6X4v9PFAxcraPG/sc/Tfj4VPGP7OSfXApdZB9qw2Fo3AwefB+wPg8/DrJ8lCCydjIvw8kO6cXK3vjzDUB4R68mgmhCSN3Msg0hSUWQZ595Nr/yaQLIx6qPaDC5QravEDZ4bJleBBGFDrB9k466ioUdST9xPKMZx3Y5DnLCqokFJmQ1ALnyqfyTz7YjCCWCNrPoThpQ8skBImlYgey3xHQYuPc11YSNfTxVkHL0gl0OohwModpsEGJRzrQAuf6J6x8jaQaPE0WCPn1ALkvogNlL6YC6z/0BUjekctZxZdqLRaQDhMUQyxCSFiD5f/29T9E8/BnWi/WxyTexlDm51l7dpxsIEDoM2AOEjhry8Q/oOAiVmpDNqjNrFQB55tKnKSCNcZBPfpps9pL0Id37Mtfba3qs1PbaEY9AgCzPFNWfALJNmliMhWvzct6J0Uh6KXUjixzkgQoR48ImBgip/2VP7if5SDrd3P/4pUv/jWw+M6VuXm1/rsoeMB4YfC4WaVDt0s6sp+aUk4KddflcLAkg6hBSHiRHxLisCQEiUTVQSOCZ0EAhZLRDZq9KPIDum/I2m3ejsVEisaeczSs7HBUh/CBNEZm1BTWTufdrr6zufKpJHV10FqbufZnL7YGDgWJ7IB7B7wdZZ/eDPPlNWfZ1J9kne2eLT47t1L5bzhUhREZIfZBGhHSRsEVkJEBU9Z1HjQKQaUxWhI+Vi+yhdEjd9xXPHYWqECIhpHGQlw0I6R1z1ICA7zE3/Xp8gMj7dEH2cDrE7oWaDCBwQvqHHDcgps81Gdy9F/OevQkcAnsjOgTuZYrnoQ3SQ5MT0gIETEh6gOTC514F7mMY1L0pHR17g6aV0L1CCQAiJ6R5kBUhWkQSBEQYG6YCiFHDSmAPzsvF5holA4iIkA4gQELSA0TcdpoEIJZ0cPutLTs8pgWINIT0ojSIkOQAkeQW6QNiT0dpbwsHMwcpCUBkhPSbsbqVo6lbwB6QRuvFEqfeiQPiRAfx70BHPjVAJIS0DxJKSGKASLumUgbEEY7cvNeqq5UFRE9I6XX/3tns1tYeY41SQ+Vdt8kCEp6OfHKAiAnpHGSLEDki1Ov+vbfm14/c1dhjrhFqqGpoI0lAXBtWbolHQ1MDRDgnSwyIjhDq9erX3N/ZYy7/NVQ59JceIO50DIXHBAERESIcjCVvlIRQr1dufqSzx1zea6h6ZDwxQLp02LgfDI8UAbEIIVJAlIikAohu4khKgAhih7n7NhwjFT8dQASE9A6yEbnl7aw0mlj6iVXJACJuWBm674UOBKSrfp4uBERLSJWkk3/1HnP5rKGAiYdpACJNO0zci1pWCEhPekDazzeREJJCNy9kXm78gCiTcrB7SeKBgPTVJURyS0G1ISYkgYFC0Lz1yAHRdVmB3G9tSfBAQEQyBURMSPyAwO7riBkQQIcuwL2y0woBEahDiOggRYS0EenfYRsXIND7nqIFBDbcoXWv6dJFQATq5Ol6QMSEqMsBlp8aCr4vMEpA4GOBGvfaAQ8ERCQ9IABCZl2ZFLohLzUUft9sfIDA6dC4hwwHIiBCtQiBAKIYM3Q9dh811OC28sgAMaJD5R44Wo6ACKUHBE5IhICYPHZhLEAuG8vBfTsv37LUgEefGiAtQoCAqAdE7DV8DTV6LMlogJj9LPTrffe9Wm473yr2x/5AZQ0IJ0RykDJC9P29Zhq6ho772B7wULjhz9oCIggB1vMRpwmIeQhRAAIhJDJADPmYFiDCBhIC0t4Gth5rQmQHKWoIA7p7TTVsDTXEY1KASNIHBKS97RUQASIxAWKMx3QAkSfXCEh7GwhITYj0IFWE1IjEA4hp62pg90p5BUTd94SAtLdNAKGEaGY79PZ2CIkGECs+xgbk+ct/wN9cvvz7/4+82//s/+Xful7uyY0A0XXN8n0f3frhPP/y+95RbryD7tna+r5fIZtfft+/5F//k3/+Kx1DtXuQUgSkIkQ3Hai/v0VILIBY4TE2IPuf/V+fKV8/lxNICBrPf7H+2pc+1/6+3r1+5ILt/fL7/sX3f7iAgvxHgfjy+37gPxFICBoffUf9/c+T3Q1DpXtgMeN5uvuggEiXhm4SEgkglnyMDMiXPvPHFIovlCA8/7lm1Mgb0QQICGRYj33y+e//d3+zYOEP/xYJEH/4tz+cf6gE4aPFSx018kY0iRoQuoDOUbaAzh7ZOHah3FiendcbuQMgnBDVQQIIiQMQWz5GBuQLn9v/bBEwrl+uWlUUkmLH5d//P4QUHkJAgMAGvdmHH/qB36bNqw8VDS0SMf7kp6tWFYWk2LH1fb9M8OEhJGZA+BJsbPlO+r5ctvOGcgm23AQQRoj+lgTB/joRiQEQu/RjMPcAlefwepGBPF+0sf64jhr7n/0Dsv+LxT+yk3+iBwQSPMov0v//5Kd/uGxekepPgkQZSqi+/L4fJl8g0JCUhH8SMSDVIp4EiuWZ7FC9bueiuUF9OwJy2gqQmpAIAHHgYyRA2Dn8EoGjiB5//JnqExpMyP78S4QNHlvUgOgTj+aX6f+fL+D4Q9LGIs0p0sIi/5hoMPk8pYcAwmNLxIBsZ4dpDkKXRm+t/KxZBjo3AiTXA6IlxH71Tib3GurCxxiA1KfwC18kIeOLzQhCiaDNLLqTBpRcBcjWlhEevJ5/6B28C6toY5GcvBFBKBG0mUV30oCSRw3IIjtVJ+m7BS05DSSnSnSI2OLpuRsgmhXUqeQzSykeLgvcUjnXUBc8/APSnJt7vXz7mSpOFAm6ISBdOgDFp7WhSDCIyjbWb5M0nMeJIqKkBwiPIFStoEHQIWLU5I6AAAhRzL2OAhA3PrwC0p28/jxtWZE21vOsF+szZk2sfuyAAlL27rI21i/T1tVHWS/W9384vSZWkZZvPM0BqXKQw+Q9a1pdm/MkpFc/vYQQ8QVzXSOdyLGGOvLhD5D+3R20A6t8aYyDfOEPyl36JF3UsAICwsYHWRvr77CNahzkQ2wIMZkkPd+d017eHbqxLPu0Nnb6gNxGVNTQzUIzq9fTpyHfK66wcD/TZiix9COYf6F6tz6RfXkZOoieJxB8gY+k047d/c9evvy/yebzvJu396s1HYbFIfWcho5CHyUAfH6LdfB+iI+k047dL79va+tnCBsf5d28gB8H1ufhx0GWjxJE1k6S99eOU0DWL7QA4R29bhFE/MD3juQxpOQDuLK6WC5/wp3Sc3f3AnvZjYHypLsaKCTBQzZQKM3KoU0staqBQhI80hgoJCPpJwowTpXtrR0SRgo2Bm9i5XBCRB9wQBwIcaih7ngMC4gEDvqR/Bf4VBMCiGiqibLTahhAqqkmBJCUppqcJ8MdC9ZhtSiSEF+AWBNC3GtXo1LKuoYyPEZ67IDWXkEH/Vj6CzxqFID0Jitq+3QhgABqA48aBSBVNIn9llsCCGlItZnQ92IZA7IJAERByCZgvTale0s7Hj6iAESFRs6/Af9R9l3AiAek+HY3pcf80AbaoysGhI9/yMdBzAFxS0PIOdKsRqVxb6M6+wgPiBaOUv30RC7yfdB4IKz4WxaCHj1IAwOyPFNUfwLIdreJBRhJtwTEmpDyHNkTYlVDG9lHYECAdBi7B1bVkaaSuZp7m4tFGlS7WZ2kE3bW1XOxLACBhBApIewcWQcRi0vU6rwKCIi+YWXpHv6HfEUBqWbzbpCN7ebU3j3dbF4bQFwIqdxbImJ+idqdV6EAGYAOsXujds6qAlLeD7LO7gd5mt4ccqHc2DtLbg7ZqX0PBYhlol67tyPE9BJ1xz7GB0SYMQzk3jQNWFlA7O8otALEgJBudWi6tyHE8BL1xj5GBmRIOjrufWbJnuwRkLZEVaLl3oIQs0vUHxscExABHIO5N4ejbe/q36t5TA9tMCakPEhrQtrnyJwQk0skGjofCxBJ6BjIvRUd7u4REIDYQcII6SPSOUfGhMAvkXjm1SiXWN6qGsS9JR3u7hEQgJqAgAmRr9RtmqqDL5FkZqLnS6zLOdzd29Ph7h4BAYgfJBCQLiG9c2RICPQcy2Ym+rzEgIzczb1d4jGYewQEouogoYS0m1mCYzciBHiOpTN3vV1iWHeVi3tnPBAQiO/BALEjRHjsBojAzrF8ZruXSwwIHc7uB8ADAYH4DgBIkxDxscPbWZBzrLoxavhLDETDzf0AcLi4H8h+xQCxIkRy7GBCAOdYeePgkJcYHjgc3Q9Dh7X7wexXDRDQnKxSVQ2SniMgIfpzrL6xdrBLbEGHnftm8AhcwREQgFoHaU6I/BzBCNGeY82NtcNcYis4LNx3Ew8ExLtCAdIfEekJRIjuHOtuPHe8xL24YUKHmfutrS4ewSs4AgJQ+yBNCFE9MosKQojmHGsfzOByiZ3QMHQvoMPE3NW9H/sVBcSIkJmqXgFSdeU5BjzXx/oSD0AH3L2sTxcB8S4xIAaEdA7SCJCims2UlUtPiOocQ557ZX6JRa2qIe946kvep4uAeJfgwZ9OgJgSMtPUMB0hinMMeu6VySUekgy4e1WfLgLiXcEByXV1TY2I9BwDHwsHvsRiOnzXMM2AIALiXYMDYkgIMdf8PVa2syTnGPxUUdg1ksYOnzVMlngAzV3dj2C/uoDACSnN1YioCBGfY/hTdzXXSNeq8lXDRH26Buau7keyTxgQl7s2LQDJJfWPS06I8BwbPHVXeo1gCYefGgajw5v70ewTBcQshAgO0oQQ0VwNwdekhIjOsclTqbWzDdXNPx81DEqHJ/cj2iMgAP+N96raKCNE4N6Ej5a9hAwpHWL3Rurbg+Hw435U+1UFxISQtntFpZQkIj338PSjYW9Ohsy9oTr2RnQM735s+5UGBEhI1728hooJ6bo35MMeDbF7UzXt4S0rL+4D2K8sIAYhROBeVlWFhHTcw/mwaE8JNFgNM0g8fLgPY58yIOCLJD5IMCFic0mlFRDStgfhMQgZyuIb2gP7dH25D2efKiBGIcQLIESiGtwnpGUv5UMRLmzR0BUfbG8Lx0DuQ9qvMCBgQnTnSEhIo1I37Vt8aJlwRANWfK29Ax1DuA9rv+qAQAgBnCMBIQeg1V9LxkiXWCInOtzdh7ZfZUCghACPfVBCIMUHysXclQ5H9xHYhwTE+unuREP0NA4LSKkmIvZMgIoPlLW5W9PK2X0c9uEAoQvoHCUL6CzPZFx0Wanl2XmWHbtQ+xY6H6IrHkaI1bGDEIH9VBBAXPLyAdxHYx8MkPP1qmsdQG5ol2CjGmSsCkSI3bHXQyLEvengYFPjA2LdpzuM+5jsQwFSLeK5Vjezrs3pxiI7pFnEk2o4QHSEWJ7iipBNNz7GBqQLR9g+gtD2oQDZzg7THGRRrYZeLg0NWgaaahBAQCHE+hSXhBTFd8Fj1BoqCh0ICERDA7LITnWT9O0yZhB0yk2Ojk9AIITYn2KKB5ELH+PVUHHDCgGByFcEqVWkHqfI66J8KRphh7lvKSBAQpQHqSfE4RQ3AIF8fdbUEP5NzGVpBwIC0dCAXJtnG0+3AGGRY3mGNa2uzXkSIgbEIIQ4AuJy7Ly2A/hoQUE32bsxLrEiKUdAIBq8F2t3Tnt5d/g2zzm6gNxGVFSWzUKz1uvW1ky43/SVEqL63szl95k29eqdYojRMGrQMZrPVASsz8OPgywfJYisnWSbu6zXqgEI7+j1G0H0c7Jcjv2SoMkEdsP2eP4bqOvRxQgCkZ+R9BPHM5ZxLM9Ub0ZuYuVaQhyO/RIDhHT36iAJAghgwAMBgcjXVJPzLHBU8cIMkGHu+tSkIfanmPbuUjzYDHhVKBkdEOBwIAICkS9AOBh1nxW0F8sghGgP0hMgbPhjs3MXlQSSkQEBD5YjIBANDAhNyZuA1AOGfPxDNw4yJCBqQixPcTV6vim4FVcAyaiAQOnw5D4d+0CA0FFzAggbHawaVvCR9MEBkRJidYov1bNLiP0Bwd3qnfbWeIAY0OHDfVL2wedilQ2qG/dUcxMLdtYhc7EGBUQZQiyO/VJz8lXpXoRI3gwlYwFiRMfw7hOzDz6bd4Nu1Rl5nu/BZvMOC4iKEONjb+FR20sQ4ZCUX7t6sNh4fctwyEtsFjwGd5+efbgknd4Psv5AubFbx4uCkLPFJ8fqbRUgoKsMBURCiOmxd6fu1vaKR1yzQHL9yF15fvHmR5qGg11icF4usXd0n6R96F4skG+Z8yEBUYQQw2PvTd1t2iseAk+/9uITxX9Xv+b+puEwl9iOjsHcp2qPgFSSEmJ2ivtT21vFV8SQ8uVKEUtuGhgQ4IiH1N7Rfcr2IQGBKilABLd+tO2lhLAmVgHHoBFky4kOZ/ehKzgCAhDwIGWEGJxi4Z2DHXtpqk7+u3JL0ca6MlwEcaXD0b27eWj75AGBXHQDQESEwE+x+M7arr2EkBIQEkAODgWIOx1O7ocwD22fNCDQEAI9SAkg4GOX3Hnecy8ZEaH/nysykL9CurJyZ0AGgMPF/TDmoe0RkKbEhECPXXbnucBeRMiwA4UD0WHrfjDz0PYISFNOgEifzCCyFxAyICCtllUiNSxS+/QBGXQ2kZAQ2LHLn1witBdMzZIZGl7ibuKRSA2L1D5tQIAhxAyQHiEQc9WDr8TF70/wldmZXGJBr1UiNSxSewSkLREhAHPlg+Ek9sIp8KLnmoCLL+60SqSGRWo/AUD0hHgHRP1gOKm9Yt6Jmf9cNeCRSA2L1D5xQGAhxOQcCQjRmeuem6iwByECKL5qwCORGhapPQLSVZ8Q9bHrH7urcq+Y3wuyp1IPByZSwyK1R0C66j/PWnnsgMdSK+0BhKiLrx0sT6SGRWo/BUC0hJidIyNAII+l1pw7LSGq4gPGAxOpYZHapw4IKIQYnqMuIQr3oMe2686djhBp8bXBQ20OFAIC0SoB0iVEbg5b1kB77jSEiP2r8nKAOVwICEQIiEDAZT/07tWJiMAeTAfIvVd7BMS7tIAMXkXahEjMAek52L2SkI69fMTD2r1PewTEu9SPtPXyNxQACJgPkHsVIU17UzqA7j3aIyDeFQCQFiFC92A8oO7lhFT2FnSA3XuzR0C8Sw+IprIMD4gBHuBzJyWkLL4dHXkyNSxS+/QBAYQQm3PUIKTnHt66EttLJCNk0+3e2URqWKT2CIhEjTy9696QD/i5Eyci1qGDKZEaFqk9AiJTDUjH3BAPk3MnIMSRjjyZGhap/UQAUVcdu3NUEdI2N+bDyH2HEGc6DN17sEdAvCsqQMz5MHRfIzIEHcbuB7dHQLxLt/6ltgZZniNOSMOcwCG5728w96ydNQwd5u6HtkdAvCskIISQ2j3lo1c83e+Yuu8QkngNRUC8S/tHWkeI7TnqAnJJDIiueIbnrjiWBiF56jUUAbGW89PduXwBwgjh7i+JAdGeG5Nzx6IGI6Tcl3YNRUCEeuHhr7+90Nd+52/IvkEX0DnKFtBZnp9n2dedZBtni41jF2rfWuejAMLSc4+ANNKOZm9W2jUUAelr/+GDdQ5701ufEH2HL8FGl7Jlq66V67HdgC7BVksTQuzPESWkNOfdV74A6YwHNghJu4YiIF1RPF7zje/5YKH3fMerC0Te0kekWsSTrGVbrtu5LDfyRXYItohnLa+AnCbm9ei5OSAA94LhwHrQMO0aioB09MIds1d+d3PH48WOH+9+azs7THMQuj76LgsXZKfBMtANqQlxOEcFH8R9Y3YJLQxf4iav9iikcy8ZLK8ISbuGIiBtXT/Sp+GFO9iqlLUW2akqSS8CyKn6E0oJfb2b+w4ICHvcYWN0cFhAtiR0UDFC0q6hCEhb+78m2vtr3UYWjyBEjUXS8xIdol0GCggQNSGDAFLtIP8NA4iSDirgsxft3I9jj4BY6do823iaAUIWSX/ym9ia0Msza/Ve5jsgILyrobOo89Wv+Y7Z7JYnGntUvyHcq6eDCPJgOY0SqWGR2gcbB9md017enZyicLbq0uoCchvRpl6klgG+ZqreA6VLWq8evOWJ/XtvZedG9xvi0tZSGTNCHA4B5SRPgOw//ubbb7/9td8t/8byUYLI2knao5Vt7OTL86QXqwEIb3hBIogyhDj8EWEzrxrPOGGA3NVbzlyq7ueg0FHLNYYk8ic4UntPgFzhAyGvvF/+pRtvO3E8KzKOXTYaUqQfh22bWLmqutmfI35sC2MAACAASURBVD41sfEIhxKQP/MI6Y9oLSUoVetzQzqIHAlJpIZFau8HkKsHZ6/8rg9+8IMPv3rW67+qRZL089mhnWvzBhO2gKhCiPU5KueWzFrPODEHpHIPSzv69m6EJFLDIrX3A8i52a1lArtfvJN+iwBCGlJVY4q+sevFylWE2J4jNvix2XpMVt2LBW1ibdbFM6eD2jsRkkgNi9TeCyDXj9zEW1ZXDwpDCB0G5IBUQWOXjJ7z8Q+jcRAqac2zO0fV4OBm60FygiRd80ObjveVb7p1ZiVSwyK19wRIRUXjbVPLM0X1J4BsEyYWLFjQYXWrkXQqae2zOkfNySXNJRHqbl4eG0GTjW3pyMviOxCSSA2L1N5XE+su9o78qRV9o5qLRRpU1+Zk8m7Zi8UmZpnNxWIaEJDmk0tmrUVDDOdiFSWaOcBBVBbfGpFEalik9n4AeYG3sV644yZJNxafzUsn8NJBkSxbo9nHnvlsXi5JLTQ/R607z4l7O0BKLGYudOR18S0JSaSGRWrvZ7r7t3/9bPaat7zn7xUvr7yT6Bv6YYTeD7LO7gfZI7eAHL3AN4pPju3UvuHOxTXR9Bx1HnxF3VeEQG+5rRtVMxc68kbx7YJIIjUsUntPOUh39FmcqQ91R2GtQQDpPrikNK8A6RRHWLpW1uE6C6FRfBtCEqlhkdp7iiB3diSIIF4AERNido56D/Zh5nUjS/VQk62uhr3EFoQkUsMitQ82F8tAJoAICTE5R4LnXnUB0TjvdVkNe4mNEUmkhkVqP01AOoTAz5HwsbvcXEOIEA4z92J17E0zkURqWKT2gwNy/S/27pcq2lx/Vz7hBODbiE4BIeBzJH4sNXffX0G941Qy2jH0JTYkJJEaFqn94IDs39u7BX3/IclgCNS3Wfiyr6GSx4pW7iWAyNHo2FuqX3wjQhKpYZHaD9/E2n/3bPbaH6u3H3/zbPY6Fz5MAekTAjxI2WN3a/ddQpSBQ2BvJ0HxTQhJpIZFau8jB3nhvtls9oqvJb1XX0+mvb9W0OgykSkgebe2wg5S+lhqMSA9OKRjHR4AMSEkkRoWqb2fJP3Fh6oHY930Oumj46AyBqRLCOQgFaviNMw5IWA4iHwAYpCIJFLDIrX31ov14nsevvPO7/xRZzpyG0A6iAAOUrVqVAeQ00Z0wNxb2IMJSaSGRWo/uW7eSo3aqz9I5apqTfMOIKCSeLrEUEISqWGR2k8XkLoZpD9I9ao4m83fqwkBF8TbJYYRkkgNi9R+woA0EVFLs2rUrBEyOCAmxfB3iUGEJFLDIrVfDUDUNVrOR2naAmQLMOOkIy9JeikIIYnUsEjtJw1IDmFEnH407fqAmBHiERBIIpJIDYvUfuqAaHtku3z0vl4Dwr4RFSAAQhKpYZHaTx+QXFjpjdT5OVNCvAKib2YlUsMitV8JQDatGeHmLZkC4v0SqxFJpIZFau8NkMfvu/01jwin9hprCEByU0Z65g0ZEuL/EivbWYnUsEjtPQFy9Q56n+31I7PXGxep73vQNophe6prTmSYp49wiVWEJFLDIrX3A0gBxmv/wZGbHyEze+/Sf13n20sjXjP40fTf22NGyCiXWE5IIjUsUns/gJAHjpaPjLuoePQoVF4AgfPhDIjnJJ1JSkgiNSxSey+A7N970/0MEMmjR43kAxADPkTHbkTIOIBICUmkhkVq7wUQykYJiOTRo0YaHhDl3MS+f8E+E0JGAkSWiCRSwyK19wRI3BHEjA/hOTptQMhYgEgISaSGRWrvKwd5fQmIcvkDqIYGxJAP8TkyAGS8SywkJJEaFqm9H0CuHpy97teP3PwPf/2OmezZvAYaGBBDPGTnCE7ImJdYQEgiNSxSe1/jIPyW25vce3kHBsSYD9k5AhMy6iXuE5JIDYvU3tdI+v7Dt5MnN7wl1C23LTUP0pwP2bHHCUifkERqWKT2qzIXi8k0/Sj9S/ZDCRktSS/VTUQSqWGR2q8WIFZ8yI89TkC6hCRSwyK19wvI/gdVn/p4urtQ/CCt8FAdO4yQsQHpNLMSqWGR2nsC5IW/QIc/Gqt59kQX0DlaLqBzo1xUiq0qtSSr6Ry7UPsepoZZ4qE6R7EC0kIkkRoWqb23bl4GiLSbly/BRpeyvTZvAHLDfgk2ichB2rWuKnOJQIQEucR1OyuRGhapva+BQv60atlkxWoRT7qWbb0mek7Wuj1kuYinTJtOfOgA0RIS5hJXhCRSwyK19zfVhL8VTzXZLpAgOQhd+Zn9X8p+GWipNu2bV6W5XPECUjWzEqlhkdr7m6zYe9vSIjtVJ+nLM2t1ur7Nosl2BY07IE58qI8dQEiwS1wSkkgNi9TeCyD791a3SV2ZiZcG4RGE6sY9h37uOF/llqBDVDe7nAFx48MZkBBJeino43s9uR/CPLS9nxzkymz2Z8kY+osPH5TcUVik5RtPc0B4jk7QqKLJtTlPQlwBceRDc+x6QsIBMgghCAhEhhf5oWoRWNk96btz2su7Q99n2cZO/kdnScbeBeQ2ok0HsfTc4Rdmyk9pnu5g71csVQ9YgtTlB5D8hfvIdMWbFGvnLB8liKydzOu0g+TqDUB4R69TBHHpvmLSnCNtT1bACGK+5OfA7oNHgEgjCEg33nbieMYyDqrd7NDOwE0sdzxggKgICXyJXQlBQCDyA8iD+fl6uKMMGoMCwvDwfI4iB2TTEREEBCL4Krff/g1P7H/7nbW+QbqAJwGkbkjljIkBe7F4+PB9jjSEhL/EToQgIBDB10k/Qp8XV0s4DkKHATkgyzNNJvj4h/M4SJ19OJ4jvXs1IRFcYpdMBAGBCB5BPvCjT+x/4D21flQUQQom7qaAbGc0aBxmO08NN5LeyD7GAURKSNAknZvbE4KAQDR0DlLNxSqZIN28e8dpPlJgsu4+F6vVeeUdEDUhUQBiH0QQEIjMLvJDr9Xeastn826QjW02mfcC2dhzn83b6dv1D4iykRUHINaIICAQ2c7FkoveD7Je3g+S7xUba0UUKTfOFp8c26l9m9aw7tjHGOdIQUgsgFgSgoBANDwg/u4o7I19jHKO5IBEdIltCEFAIDKroxdnt0o7d2t5AqQ/NjjOOZISEtMltiAEAYHIbDbvB+6bzW7XjoNAZQaIYOwcAallTggCApFhE0s3DmIkI0BEc0tGSNKJZITEdYmNCUFAIDKMILpxECMZACKemjgiICJCoknSS5mm6ggIRGk8F0sydXckQGQhJDJATAlBQCAyusgvDhA2mr6hzmVTd8cCREJIbIAYNrMQEIgMLvILZAHP2S1DrG/LfMOcy2e2j3aJUwHECBEEBCL4RSYPdn/Nm4dIzivfEOeqG6PGu8RCQqK8xPB2FgICERyQ8plY+/cOsQA08w1wrrxxcFxAeoTEeYnBhCAgEMFn895bPhNL9jgTCwEAUd84OOIlTgcQcDMLAYHI6H6Q5usA0gOiubF2tCQ9FxIS7SWGEYKAQBQ1ILobzwMDEmOSXgpECAICUcSA6J9bMiYgAkLiBQSUiCAgEMULCOC5PqMD0iYkYkAghCAgEEULCOS5V+Ne4qQAARCCgEAUKyCg516NfIm7hER+iXWEICAQGQAya8vrbF7Yc+EQEKU0hCAgEMUJCPC5iWNf4g4h0V9iNSEICETwdvSLH2zLfaV0GSDgx+6OmqTnvTw9/kusTEQQEIginO4O5mN0QDqERJ2kl1IRgoBAFB8gYDwQEIjkhCAgEMUGiAEeAQBpE5IEIHJEEBCI4gIE3rqiCnCJm4QkAoisnYWAQBQVIIZ8BAPk9CDuxyu+mBAEBKKYADHEI8wlThEQcTMLAYEoIkCM+QhziWtCErnEVAJCEBCI4gHEnI8ASTpRRUgil7hUnxAEBKJYADFNP6gCA5JKkl6ql4ggIBBFAogVH4EAqQhJC5AeIQgIRHEAYsdHKEDyNAHpEoKAQORrlVuQb+7cDo+Al7gkJDVAOokIAgLR8IDQBXSOPlDvqNZ9Xp6dZ9mxC7Vv5tyWj9CAJHKJm2oSgoBANDggfAk2vpQtWZuwBOSGZAk2az4CXmJKSCKXuKUGIQgIRN4W8azWst3OGCCL7JBgEU/L9IMqLCCnE7nEbdWJCAIC0dCAbGeHaQ6y4CHk2pwBIl4G2oWPYEl6XhKSyCXuqCIEAYFoaEAW2alWkl40sE6UOch2uWh68cpbXwUgLngEBUSxdCFYoWooIwQBgchXBOFaZIdZkk7QIdploBBAnPBAQKwFfXyvJ/cx2IcCpGhRbTxdA7JbNK9KQJZnWNOq6tRigDg4CwnIAIQE/BMOebCcR/cR2Afrxdqd017eHbpBEw4xILcRFXxspqoyT09VjJDQxQioUIDky0cJImsnyXuaqvcA4R29RQRxcxW2Fe0cQsIW3zWGYASx1o23nTiekYxjm/ZfKZpYjo4Cp5muhAQuviMhCIi1SJJ+niYflIlJA+JCSOhuJDdCEBBrEUBIQ2o7q1S0qkS9WI6OgibphfvEAXGLIQiIjWhWLgaEj3+0xkHcFBiQmWMjKzggTp1ZCIiNlmeK6k8A2a5nlLA2lXgk3UlRAGJPSHhAXAhBQKxUzcViDaq8AqRgZ10wF8tFwQFxCyERAOKACAJiJz6bd6Paw7PyPclsXnsFrmGk+C6ERAGIdW8WAmIpej/Iuuh+kL2zxSfHdmrfiQNC7F0aWREUn8ouiCAg1jK+o9BWMdQwB0JiKH4pG0IQEGshIKP4H7KGWRCCgHhXaECGcW9PSESAWCCCgHhX6oAwe2tCogLEOBNBQLxrSoDYEBIXIKaEICDeNRFArENIZIAYNrMQEO8KDcgQ4yBUloREB4gRIQiId6UOSG1vR0g0xa9lQAgC4l0IyEDuB7SHE4KAeNd0ALEjJJ7iNwRO1REQ7woNyJDuJwMImBAExLtSB6Rlb0FInIBAm1kIiHchIE7yWMMgiCAg3jUpQCwIiRcQSDsLAfGu0IAMNg5CZZ6nRwwIgBAExLtSB6RjPylA9M0sBMS7JgaIMSGRFb8rDSEIiHchIIO6H9xeTQgC4l2hARncvSEhsQOiTkQQEO9KHZCevWGeHj0gSkIQEO+aHCCGISR+QFSEICDeNT1AzAhJABBFIoKAeFdoQIYdB6GaHiBSQhAQ70odEJG9CSERFl8kCSEIiHdNFRAoIREWXyhxIoKAeNcUATEJITEWXyghIQiId4UGxI97OCHJACJsZiEg3pU6IGL7SQIiQAQB8a5pAgInJClAeu0sBMS7JgwIiJC0AOkSgoB4V2hAPIyDUEEJSQyQTjMLAbHWSj3dXaDJAtIiBAGxFF1A5yhbQOep41m29i075cby7DzLjl2ofU8UECghsRZfoQYhCIid+BJsdClbts7tOl117cbUlmCT28MIibb4CtWJCAJipWoRT7KW7bX52sk83zteroy+yA5NaxFPDSBaQlIEpCYEAbHSdgEDyUEWJIQsyjhSLgA9xWWgpZouIBUhCIiVFtmpXpJ+4x6CxnYZR4rXu7nv6QICIiRNQDgiCIiVeARpqlzmdsFWTt9loEwbEAghqQJiu3D0UO4HsQ8FyLV5tvF0G5An5wSN5RnWtKpWhQ4OiK9xEKopAzIIISsKSL47p728O3x7kWVrpM+3C8htRJsTFiUkdCF8iSUioYvholCA5MtHCSKk+4pu/eA3z7O1b20Bwjt6U48gGnttCIm7+GoBnk3q0727fdiR9BPHM5ZxED1F2lgTbGLp7HWERF58jVwJWWlAHszP18MdJC8/tBMhIL7d69KQtAHZdEQkePFh8gVI3ZDKGRMr1otFNHFA3AgJX3yQBgaEDgNyQJZnGBMUED7+sRrjIKXUhCQPiFMmEkHxIRoYkIKJuykg2xkNGmWwoK8rNZLOpG5kpQ+ISxCJovh6eZuLRYIHGRTZyZfn6cSsgp31uOZieR0HKTV5QOyDSBzF18rbbN4NsrFbvl+jLa291ZnNW0tFSALFh5hbIhJL8TXydD/IOrsfZK/YWOO3gOydLT45tlP7XhFAZIQkUHyQuR0h0RRfLbyj0LP9CgBil4lEVHyVVhmQcdzLCZkOIDaExFR8hVb5oQ3+e7GIVgIQC0KiKr5cCIh3eykhUwLEnJC4ii8VAuLdXpqnTwoQ41Q9suLLtMqAjDAOQrUagJgSElvxJUJARrCXEJJK8cHmRoTEV3yhEJAR7FcFECNEYiy+QAjIGPZiQpIpvoE5vJ0VZfH7WmVAxnMvztOnCAickDiL3xMCMoq9kJBJAgJuZsVa/I4QkFHsVwkQICHRFr8tBGQcexEhUwUERki8xW9plQEZaxyESkDIZAEBERJx8ZtCQEayFzzPOqXiG5oDUvWYi98QAjKW/UoBAiAk6uLXQkBGs+8RklbxTc11hERefK5VBmRs911Cpg2IDpHoi18KARnPftUAUbez4i8+FQIyon2HkMkDoiQkgeITISBj2q8aIKpmVhLFX21ARh0HKdUiZBUAkROSRvERkHHtVw8QKSGJFB8BGde+SUiCxbcxlyQiiRQfARnXvpmnJ1h8K3MxIYkUf5UBCeJ+BQERE5JI8RGQse1rQlYGEGEikkjxEZCx7VcSEAEhiRQfARndviIEWPzTpgKWY1w+e4QgIHrfiSfpDoCchvsHV3hTg5HPXjcRQUD0vhMHxNaeEwIExPz3YV8b++x1CFlhQFJ5ujsC4iIL8xYhKwsIXUDn6AP1RrWAzvLsPMv4Rr66gHBCVg6QFiKrCghfgu3uxka5bOeN2JZgC+e+JGQFAWm0s1YUkGoRTwLFbrZ2MifrdlIoFtmhuBbxDNSLlfOOqVUEpCZkRQHZzg7THGRRhBC+TnoROk6t5jLQUpkC8vI7/9qHi5ev/MT3/taf/kKJ17vI/j/9hffy733lH/1S00KvUA1URsiKArIoWOBJ+o17WHOK0ELRIdouW1/5SgOiWUG99U3y38vv/J5foi8EkHeVewgaH3l7/cXnvve3GhZ6BcvgSkJWFBAeQVqigCzKcFK0uw5z34kn6U7FBxPCAPkpgsVHfqoCJP/NtzejRt6IJrEDYrXm55D+TcyHBuTaPNt4ugMIbVUtz7Cm1bU5T0JSB8TJ3hSQf/qTv5X/6b/6xTYgHyFB4ys/cfp7/s0P/VIdQqIHxHZp9cH8G5gP3ou1O6e9vDuNXbRx1QXkNqLNFVaZhgC+R07ay+/8Z//6w/nLf+M/VIA8d/q9OX37lZ94e/GPtMBe/qEynkB+NbAYISGLAKzPw4+DLB8liJDuK6Zd2qPVAIR39K50BFGuoN76GvmvyDg+8t78uXc9Vyfp7yVsFP89R9L35wggdDNPIYIMEUNSjSA5GUk/cTxjGQcJKWvkbYRNrMDugYRwQJ57e/6b732ORZCX30nCCCWCNrNo8OCNrxQAcU9Ekgbkwfw8H+7YZsOEEwTE1R6WhnBAvvKT//Eff5gDQltYaQOy6UhI4oDwhtT5jA97xNeLFRqQTSNA8n/7i2/PK0Dy3yxaVgk3sYi9GyFpAkI7rGpAlotsnc8s4eMfOA7CtQlqZFWAfOT0uxqAvPzOtxeUvIvEjV6SDnXvpAEyOKdEJE1AlmeK6k8A2aZNrEU9ryTCkfSg4yA5B0RXnStASP2vAeG8EEJOn/4nhI2PJNPNy+0POCCSJiD1XCzSoNpu8EHYWY9rLlbgXixiDwVEomqgkMCTzkBhw94ekUQBqWbzblTTd4lI2rEX22zeCAABEKL8mE81YdEFYNF276Chzp4tIqkCUt4Psk7uB9nNWoDke2eLd8d2at8ICKCRpfyYR40CkGQmK/bs7QhJFpB07igMPQ5C7QEhxGzCe6QPbVDa2xCCgOiVfC8WESQN8fFQk5gAsSEkYUCgQkCITOq0wNzVfSjzjr05IQiIXpMAxJqQSQFinoggIHolPw5CZdQu6pu7ug9k3rM3JQQB0SuyS2xrj4BQGRKCgOgV2yW2tbcjZGqAGCYiCIhe8V1iO3sEhMmEEARErymMg1BZETJBQEwIQUD0mkYvVm6Zp08REINEBAHRazKAWBEySUDghCAgeiEgA7kPYC63BxKCgOg1jXEQKgtCpgoIEBEERK94L7G5vTkh0wUE1M5CQPSK+BIb25tNNBzc/ejmansAIQiIXjFfYmN7BKQlLSEIiF6TGQehMiVk2oBoCUFA9JpOLxaVISETB0RHCAKiFwIypPtxzQH26kQEAdFrYoAYEjJ5QNSEICB6TWgcpBQC0paKEARErwQusaH9iPeUp3H25IQgIHolcYmN7BGQrqSEICB6pXGJjewNCFkNQKSEICB6TWschMogT18RQGSJCAKi19R6sYgQkJ7EhCAgek0REDghKwOIuJmFgOiFgAzvfixzQ/s+IgiIXpMbB6GCEjJxQA44aqDiIyDR2UPz9GkD4raIuv4HEBDv5t7sEZB82oCk8nT3WAEBEoKAuPxCOEDoAjpHH6i2b9zDV7Vdnp1n2bELte/Ek3QExKP9ZAHhS7DxpWzzBV/2+UZsS7DF2YtFBCIEAXH5hVCAVIt4srVsl4uMA7LIDsW1iGfcgGgJQUBcfiEUINsFDiQHWZQh5KnjfIHCCJeBjhcQUAhZBUC+jfbYfrXRDz974JHGL1i6rzQ0IIvsVCNJ386yjScZINvVK299hQYk0nEQKgAhKwHIG+j/X/WEwQ/HDQiPIGxr/YGi0VWCQdAh4tvpA+LTHgGh/5eA5G+6y+CH4wbk2jzbeLrVzcuAWJ5hTatrc56EICAK6QlZIUAeI40s0tx6JH/pVX/5VQcOvOGl4r+CGvJy4A1sJ6HoTQcO/KWoAcl357SXd6feIQbkNqJNlEw0Tw9diIBqAfJs0cb6tgKSx77qiZdeVbx/7AD97xEaWopXtrPYfgNhhAGidgCsz8OPgywfJYisneTbfUB4R2/oCBLtOAiVtidrhSJI0WoqG05vuuulV9HAQf+7/yWSm5BXtk2/9FjcESQnI+knjmcs44i5iRVxL1YOeBbpKgHyVU88Vk5BLNpW91MW2H/Pkp338+3HSDb/0qviB+TB/Hw13IGAyKQpPgJSAfIjX50/xnqy2oC86cD9ZQRJDpC6IRVvL1bkgOgIWSFAilTj2QIFohYgJDchn1TbpHUVdS8WHQYUA8LHP3AcBOxfTcjqAELHQch/DRYYECSANHa+6asbSfogxR8YkOWZovoTQLa7TawIR9Kj7uYlUqchKwFImXhU7+/vNLF+hOwjmTvfGX03bzUXq5ukE3bW45qLFT0gakJWARAXxQlINZt3g++oco692Gbzxg+IspGFgKh/IFJAyvtB1uv7QeqkfO9s8cmxndp34kn6GDVUQQgC4vIDoXuxQL4TB2SU4q8sII6E6OwREIB/R/fjFF9KyLQBcX2syVDFX+WHNiAgAc0HtodRYeF+lQGJfhyklIwQBKQpYOAwdo+ARG8vy9MRkJYMCUFAvJuPZo+AwOyNCEFAvJuPZy8mBAHpyoQQBATgP6x7BGRwewNCEBCAf0f34xVfSAgC0hc8EUFAAP4d3Y8LSI8QBEQgMCEICMC/o/sRi4+AQO2hhCAg3s1HzWEEhCAgYuFIeqWpXmKBEBC4PS6gwzXZSyxQnxAERCYIIQiId/PxAWkTgoBIBUhEEBCA/7DuDe0REAN7PSEICMC/o/uRi98lBAFRSUcIAgLw7+geAYnaXo0IAgLw7+h+7OJ3CEFANFK2sxAQ7+ZBAGkQgoDopCIEAfFuPr59mxAERC85IQiId3MEJAF7KSEIiHfzAPYtQhAQiGSEICAA/2Hd29g3CUFAQJIkIggIwL+j+wDFbz6LFAGBSUwIAgLw7+g+RPEREHN7ISEICMC/o/sgxa8JQUDAEhCCgHg3D5TDVIQgIHD1CUFAvJsHskdAbOx7hCAg3s1D2XNCEBATdRMRBMS7eTB7BMTGvkNINIAoHvUeGpAEx0FKlYQgIIZqERIJIHQ1naNsNZ3l2XmWHbtQ+04ckGDFR0As7RuIxAEIX4+Nrmt7I7Yl2JIFpCQEATFX3c6KApBqRU+6sO0iOxTXIp5pA3IaAbFQRUgUgGxnh2kOsiAhZHrLQAcsPgJibc8IiQKQRXaqTtK32WKe22WDK08fkJD2qgXUR3Dvbh7OviQkCkB4BKFasJXT61VvERB7ISD29tDH91J5BeTaPNt4mgGyPMOaVtfmPAmZoVDBBKzDfnuxdue0l3cn7wNyG5HjMTraB3afePFTP3vAKux5HGT5KEFk7WQLkKqjF1pImRztA7tPvPgrcvZGGEk/cTwr0g9BEyuVcxSp/Wq7nxAgD+bns0M7CMjQ9qvtflKA0FZVvxcLhYpePgGhY4IVIHz8ox4HQaGil09AlmcKFggg22R6SX8kHYWKXuPMxSKtqwKX9fZcLBQqeo0zm3eDbOx1Z/OiUNFrjPtB1tn9IHtni41jO+VG9+YQC924xz7dJwVbc3D/1PHC/lt2rO2JGv15hmJ3Dtj/sVmeL87+1520sz2Tcdn63yPVwuHsE3vbs1/XGlAVDHVHYe/mEAst7PvDWGizToe2S/t1l+Iv7Vub1+aOFfSeRmQ3lTsgrPjWZ/9Jl7Nf1RpYFQwFSO/mEGMtF5k1ILt0cL9wb32Fqf1xpx7rAjLbo3fsKi/TweXP2ldRouIk2JmTvwwuF7/gq7Bfnrexb9QaWBUM9NAG9y4t0saxrSbFFaJjMsXfkFNWP7Aou6obs2bMRf6M2gKycOsq32V/GLZdOKN9lFZyvfgLdt4W5levUWuApQgESP/mEOMfyDaetL2+N+5hFduxolW/Y6Gifp2wzUGqWQnWru3+LrS07Rr/bItR2ZnH0WatAVbBQIA4D6tvF5m/+5i8IyD2WTZtClub37jn0M8VfwqPXrBz7cJ140esKXOMIKJJS0A1aw2wCoYBxOEYG3IGxHHQ8sm5/V/i3eLvr/XB8xzd0j3x++Q31b2LVnJonlU5iN0vOFaeKn7B0dK2hgAABWhJREFUfmWlAXFqgxfZ3pp1DaNoWh/8btFS2Mn/6Kxlkl34Pdt42oyVnP62LMtOxOIYrLSoYsAqAOIQ7V0B2XXpxVn+4DfPs7VvtbRmj7GwBGS7qiFWNXy3rJxFNbU//l2XCRHXjpfdtBcszees+FadkH1AlL8SHJBwEWR3vuaYqz5l28YqE1yngyeyrKW7PHTYDyQ55flVBbflk41C2XVypBZBggGy7TYKwEpgVXw2guAMiGX8rQYw7AvgFPkXznw+RbsoJpyDDHNziJOxS/uikmUN266Got2mEli6r2q3fTV3OfXD/HW0LkQSvVjD3BzicJWWC5dpIlUDIwwgDgMBzJ7VUPtEwqV/fDBA7Aqx2xn/iHMcZJCbQxwAsesAaZgfbr3aybqCLNxG2hrFt6zmbiOVrk2sbT6PwaoQvNbEPZI+yM0h9oDYjwKXck4z2a/Yj4MU7veOO0xmOnbBpfhuQ427jp1o5Uy6p+a2fXhlrQFWwVAL6Axxc4g1IHy2uP1srl02G9ipG8y+icHaaG+8YOl5d+5WfMfGEW9i2jbT2FxsuzJUtQZWBYOtMNW6OcRO1oDsZq6AlHckuN3O4lLNqHvbgTZiT26FsJ2q4jgKUuhpumyMtfuczAOwvJulUWtAVTDkEmwoVPRCQFAohRAQFEohBASFUggBQaEUQkBQKIUQEBRKIQQEhVIIAUGhFEJAItDjbz44m73idb9hYLL/8OuK/y/OXs/fCnXulida21cP3mVZxJUVAhJc1+/g6+a9Hm50ZXZrzgAp34q/1OXh3M2PWJZyVYWAhNb1I7Ob3lr8oX/hvtlMGgp6alAhBeT6kd4Hgl0opRCQ0Do34+2gKwd7f/GlggBy8ab7QftQCiEggXX1YN3quUhZOVc2tS6W9f7xNxdtr1e8hTB0bnbX+189m732x/P9e0mL7FbSxGJvrzDMLta0XD/CyPvVg7NX3s8wunoQQ4iREJDAutjIPK4fIX/fW4A8xNIT8v7c7Hb6/uZH+oBcP0I5K7bu6v7yOWp0ZwnI/r0YQoyEgIRVs0YzNpqAXJnd9N3F+/fPSnJmtz6Rv582xHpJ+jn6O4yT8pdLFK7MZm/NX7h3xkLLRZOuABQCElhl0OC62AWEvS8xYtnKuZqKBiDN/9kvl6yUP3H9CPtE3ueFEgkBCavGn/y8DUWVTbz4ge+4Y1YCcmv1QQ+Q8ofO1fGIZSWcQP5zzZwHpRcCElaaCJK/wAdJ7uq2vbrjIISNJm5VVl7u4pGjTSRKJwQkrDQ5yNWDs9lNr/nGH7tXDwh5abafLsoAwSzdRAhIYCl7sQp8biXtpH0AIKRXt9HC4oDwiIGA2AkBCSz+F/6h1/1GfxyE1+YixdYCkp+76a/e22g+Vdy0cxBsYpkJAQmtsm+KTDi5sxxJL6syCR5V7b4y6/f/9gC5Mvva5ijg1YPlOGFpRX+u3I2AmAgBCa3rd5Rzsd5/kM1WbAxclE2s/XfPBICQ6s8AKUkoGGuOcfBQUaQxr8/3H5pVGGE3r4kQkODav4/P5i1HBcux8Zv/fskB1S3v7vb/kuz9licoIOVbatdML6ox84v0J27HgUIrISAR6Nfvo51V33Ufq+nF6yt/vPxT//gds9kr3lpGiVb/768e5ICUb3M+lavSFY7C4yRGXcGpJlZCQGLSC292+fPeCQ7VZEUqnKxoJwRkMuoFh4vNIRY+nIgBxEwIyGT0/m763QohfEIKBhAzISAT0bnZrBccmrfcsjm/2MdrKARkInp3kYj3djYe2nCl7PvChzYYCgFBoRRCQFAohRAQFEohBASFUggBQaEUQkBQKIUQEBRKIQQEhVIIAUGhFPr/AacdbIo7UnwAAAAASUVORK5CYII=</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $80.00 </li>
<li> False. The short run equilbrium quantity under monopoly is equal to 2 </li>
<li> False. The equilibrium quantity is equal to 2 because price is above average cost. </li>
<li> False. The consumer surplus is equal to $20.00 </li>
<li> True. The producer surplus is equal to $60.00 </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="50" format="html">
<text><![CDATA[<p>
If the firm can operate as a monopolist, it will set a price equal to $80.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $80.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
The short run equilibrium quantity in the market under monopoly is equal to 3
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The short run equilbrium quantity under monopoly is equal to 2
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
In the long run, the equilibrium quantity is zero.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The equilibrium quantity is equal to 2 because price is above average cost.
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
The consumer surplus in the short run equlibrium under monopoly is $45.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The consumer surplus is equal to $20.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
The producer surplus and monopoly rents in the market are $60.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The producer surplus is equal to $60.00
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>