-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQuiz 2, A2.xml
179 lines (170 loc) · 51.3 KB
/
Quiz 2, A2.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
<?xml version="1.0" encoding="UTF-8"?>
<quiz>
<question type="category">
<category>
<text>$course$/Quiz 2, A2/Exercise 1</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q1 : private_fall_quiz_2_q13 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of a firm’s production function, represented by isoquants for production levels and isocost lines for different total costs of production. Which of the following are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAMAAACtqHJCAAABqlBMVEUAAAAAAAMAADoAAGYAAwQAA/8AOjoAOmYAOpAAZrYDAAADAwADBAMDBP8DmZkD//8EAwAE//8ekP8fBAMzMzM6AAA6ADo6AGY6OgA6Ojo6OmY6ZmY6ZpA6ZrY6kNtNTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmADpmOgBmOjpmOpBmZjpmZmZmZpBmkJBmkLZmkNtmtttmtv9uTU1ubk1ubo5ujqtujshuq+SOTU2Obk2Obm6Oq6uOyOSOyP+QOgCQOjqQZjqQZmaQZpCQZraQkGaQtpCQtraQttuQ2/+ZmZmrbk2rjm6ryOSr5P+2ZgC2Zjq2kDq2kGa2kJC2tma2tpC2tra2ttu225C229u22/+2/9u2///Ijk3Ijm7Iq27I5P/I///bkDrbkGbbtmbbtpDbtrbb27bb29vb2//b///kq27kyI7kyKvk5Mjk////AAD/ADr/AGb/AwD/BAP/BAT/OgD/Ojr/OpD/ZgD/Zmb/Zrb/kDr/kNv/tmb/tv//yI7/25D/27b/29v/2///5Kv/5Mj//wP//wT//7b//8j//9v//+T////S2bY9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2di58cxXWom5UtELkE2MvGiIBGRKDIMTYXbQzIjlEgD4cVZjG5xheiJWKDQJbssAiuIkXSaFcgwWq2/+d0VT+me/pVj1N1TtWc7/fb3ZnZmTnV0/XNOVX9SlKGYXpJsBvAMJRhQRhmABaEYQZgQRhmABaEYQZgQRhmABaEYQZgQRhmABaEYQZgQRhmABaEYQaAEuTBmReLWwfvrE8mr14Ael+GQQVKkK1JIciDMxPB858AvTHDYAIjyMHWpBRka/LChfT+uckLX4C8M8OgAiLIn34xKQW5ty5zx4Mzx9+FeGeGwQVCkCuTyWt/LAS5Uv19HeCdGQYZEEFO/CbdLcTYmrwh/5b3GSZooAbphRAH54rS6t46D0KYCHAsyFOCjTTdMPpZzTB9rfqPiOI6BuX4y/qDLUg50ZuYh8gFcc2qnzCD8RHDM4O4L7HIC4LdQ7EFZYaIWBDlLArdQZUDA8fXjQsFVlwvgYEF6ZjFYkF8xWdBHAAtSLn9Y74dhEss6vGZAaAFaW9JZ0FU4rMhRIEW5ODc5ERzXyxLQcx7TjAlFlQDuMRyALQg6f3FvXktBLHrOVqCQBrCgkQUGFyQ9P47mR+vzjejowlCLsxgfK6xaOL+iEIWRCk+C0KTiAVRT8DYJRZQA7jEcgALYhvGJjBsA1gQB0QsCLkwhBvA9MGC+Asz3AA2hCQRC6JXYgH2T4PMD9IALrEcwIKkLEigcVkQb7UPeoWD3gCmBxbEZ5zBBrAhFIlYEI0EjF5igbSASywHsCDWcWwCg7aABXFAxIIQjEO5BUwnLEgZhwchTAcRC6KTgEG7p1HmB2gBl1gOYEHsA9kEhmwBC+KAiAUhGWiwBVxj0YO+IEs0SmdB6EFbEKuOG1aJBdAELrEcwIJYx7EKDNkEFsQBEQuiG4drLKYNC1LFYUGYNhELopWAIXunYea3bgKXWA5gQewDWQUGbAIL4oCIBaEZaLgJ2G1gFmFBPAcabgJ2G5hFIhYktBLLug1cYjmABZkHgjKEBYkocMSCUI002ATsNjALsCDeI9FuA9MkYkH0EjCBEsu2DVxiOYAFAYhkFXihDT4uyggMC2IXgUssnTagN4JpwILUIqF3TgptYBpELIh+iQXUOc0zP5dY5AIHIIhpl9H8+KgI4ucgfEhYELsIWIIYhPITabgN6I1g6hAXZMlG6TQawdSIWJAASyx/5zmChEssuwgsiF4jPM1KwMGC2EUIqMTCL29INIKZw4JghCLeCGZOxILoJmCwvmmT+T3Oa4PBJZZdBBZEsxEsCKHAEQtCOBT5VjAlLAhGKPKtYEoiFsSkxALpm1aZ36IVXGI5gAUBiWUXGKgVLIgDIhaEdCzqrWAKWBCcWMOtINAMJidiQQIuscyawSWWA1gQkFh2gYGawYI4IARBfM7zEihuaLSCyWFBcGLRbwYjoS6I11lPoJ4JUGIZNYNLLAewICCxLAPDNIMFcUDEgtCONQDXWIRgQZBiDcCCECJiQcxKLICeaZ35DZvBJZYDWJCFWCxIMHFZEIHXcoNIbcM1Fh1YELRgA1BpBxOzIAYJmEiJZdgOLrEcwILABLMM3NEO/YawIA6IWBDDYCRqGyrtYFiQxWAkOiaVdjARC2KSgEE6JkDmNzKVSywHsCBA0SwDd7SDBaEQOAhBlm+el05Dlh0WpBXNW7AhyDRk2SEviN8jUEF0hMj8Jg3hEssBLEgrGAlBTBabBXFAxIIEEG0AMg1ZclgQzGgDkNkks+RELIhRAiZVYmm2hEssB7AgQNFsA7dgQUgEjlgQ42g0Khs6LVlqWBDccP2wICSIWBCzBAzQLYEyv3ZLuMRyAAsCFc42cAvtFMKCOCBiQYIINwDXWBRgQTrCEemWdFqyxEQsiHmJZdktoTK/blO4xHJAGIL4PFUtC6ILC2IXAUsQi3geww1BqClLC31BlneUTqkpS0vEggRfYukmTy6xHAAvyP1fTiaTVy/MIwQoiJ0hcOuNBUEPDC7IvfWJ4Pi7VYQASywqhQ2hpiwr0IIcnJu8cCG9n/3+oowQmCCUeiUlWZcUaEHurT//SfbnwZkqhYRWYtkLApj5tdrCJZYDoAXZnbwo/mSJ5I0yAgtiDguCHTjiDBJKvCG4xsLG2RjkxSpCiIKQ6ZSU2rKUgM9iHXwsZ7Fey8foTwmyTLhh8SP6iM3rtX9kQI/xQmkLuZ8Nq9cjCXLvF1KQE9WGkODGINbf2saBO9BJZ5BxdcCKG+gYRCSPLI2EOwahVdaQaswSAi3I1uT14m85CGFBrCDVmCUEWJCDc0XmuLdebikEEcTrVZFtR+mgmV+jMVxiOSAAQfxfNpySIBqNYUEcEECJxTUWodYsHfBb0sEH6SwIodYsHeDTvFcmOa9XEbjEskO5NVxiOQD+eJD/FMeD/BzweBAcQSwMYUEiChzAEYU4JRadqoZWa5YNFoRGxCFotWbJiFgQiwRMqsRSbg2XWA5gQQAj2gfuRLXGYkEcELEglhEJVTW0WrNcsCB9EQl1SWLNWSoiFsQmAVv1SPDMrygIl1gOYEEgQ9oH7oYFQQsciiBLPc/LNRYeIQjCgxBizVkmIhbEtsQy7pEOMr9Sc7jEcgALAhkSIHA3SsKyIA6IWJDQQg5CrT1LAwtCJuQg1NqzNEQsCFKJlSQAS9xCpcbiEssBLEh/SCNDksSdISNPYUEcELEgKDGTxJEhXGPhwIKAxkwSV4bwphAcIhbELgEDCfL9o9ntx61aotwgLrEcwIIMxNQPuijI948+lKZPPPSkVVNUG8SCOCBiQexj2gvylcge3yU/RGsQY0kwggQ2CCnuPpHf+wFegxg7IhbEMgFbTWOV92Cqq3mDBlvEJZYDfAiyY/0eAQnS3FD4VfKYXSvqsCAIgb0IYm1IOIOQBbJB+pNglvAoBAE/gtgagtIzQILKad7H7BsjYEEQ8DIGsTYEo8QyF8RZ5h9pEZdYDvAzSLc1hAWRjKQQFsQBnmaxLA0Jt8QChWss//ia5rUzBE0QYt2RXouix9t2ECtDUEos/9efHmXYWS6xHKAtyMU3jz5zfv8fPlKPUISwMYQFKWBBfAfWFGTvVJIkh87vn0yOKUcoQ+yYK4JTWhAsaAg2KXL0BMnEePZ3Jw+dn/02SU6rRqhCmBvCghQQHBdFjp4gm8mRTJJD59N0O7ulGKEWwtQQo34BUmL5PufpGENN4hLLAVqCzM6uvF0IsrcmfitFqIewMUT3NfYfH1FB+trEgjhASxDpRi5I/lspQiOEYZnFNVYB11ie0RTENoOYGsKClFBsU8zojkGO5YLMNo3GIBITRfBKLO/H+o4w0CYusRygJ8jeWvLc5ycP/dvnp5IslyhGaIUwMARHEJSD4cdgQbwG1t0OslYcUrqiOsvbeUShtiFIhQXFeoZHIV7R3ZI+e/9opsfhl/+gHqErhK4hLMgcko2KFqxj0jUNQSyxEPZxGaa3UVxiOQDtpA16hrAgc1gQn4E1Bbn71tGSZ8ymeSu0DMEqK0iWMyQbFSt6gkzX5mdGM9wOMkfHEBakBg/TPaK5q0ny8K8vFagO0/vPi6VhiEmfgEjAFEus3lZxieUA/S3p2hH6Q2gaohkYShCMwc8wLIi/wPr7YmlHGAihbgjXWDW4xvKH5q4msBlEY6M6C1KHZquiRPeAqUfUj7UtIwyGUDUEqcTCml8eoTuFcInlAN1p3lPJ4b98SfLTy4oRRkKoGYIpCErgYVgQX4G1d1aEm+YtUTIEs8QiWM0QbVaE6E7zrvzsg4LfA2UQNUPQOgTNnsiC+AJ1mrdEYSCCVunQLLE6m8UllgNwp3lLxg1BFUQzsi9BFpvFgjgAeZq3YswQ1BKLYjFDtFnRoT3NqzjyqEVQCzFiCF4/JdoTqYobG3qD9Ld+kiTPvAQ7zVsybAhepUOzxOpqF5dYDtAcgyQOpnlLxg1RfKMCQEH0IvsTpNkuFsQBmhnkpTnQGWRkqM6DkAWotisySF0GesgQvO5AtSOyIT4gJchQmYU3FCBaYrUF4RLLAcq9d/bWTy87LrEEvYawIC1YEA8xlHuv2EjodpCe02cIbolFspQh27CYUM8gn/3+8uyzD+bA7YvVpMcQxM5AtR+yIB4gNgYRdA/VETdH6Ib2VnIsGMIllgNM98UyvfyBCp2GsCBtWBD3mApifPkDJToMQawn6JYydFsWDepjkLNJE9W9skwE6TAEsy+Q7YYsiHPUe++06Yfy6d2NBOkxROst4BKwZmiPJUejZVxiOUCj935z6fOThz4sThunEcFsHqA1EGFBOmikEBbEAZr7YqluHaxHECF2zKi/D3KJRbSSoduySPAzzWt04c4FQzC7At1uSNjdOPAkiNErm4Zg7vGhF9tryVFrGpdYDiAtSGOoji2IenDvgqwixK3BgthFsBCkbgh2iUW1kCHctBggLkitzELtCIR7IWV5I4C6IHNDtDsCZAKmW2LV2sYllgP87Is1F+RW1t+//LbjaXfbDxavKgxBF0Q5OIIgqwhxK1iQEuN9sUpBZteup0KSO61n7XVYU76qZohOa0GhXMdQblvw+NkXq+zqN67LP7eut541JEhhCAvSA+W2BY+ffbGKrr5fSx2zazs7N7O/e2KQcUf8vr2Xbz6vVJkXZtIQ1L3OCZdYVY3FJZYD/OyLVXT1WpqYXbspf+RDe5khQxkkH6qjC6Ia3XuHYUHc4WdfrFKQq9Wj06v5r/KhEUFKQ7SjQ0F6MpV04wLH6zRvzYLp9eL+jaLSGhFEKoLZC0j3QdKNCxv40/4cfLw+mfzVr+YR2mOQ/S+/rQQRj+5clTf7xyD53cwQ1dYKYBMw5RKrSCFcYjkA/LQ/989MJK9VEWqzWMX01a2r6VRoMC3qq/3RMYhgVeOy6gJ4QRQNQegwLIgroE/7c3BucuJCevDvk+PvlhE6t4OUg3TpSGbHfse2kUVBVpUvGu0C0mUMj0JcAT0G2Z08/4n4e2XyYhmhsSX9RllDldO80+KBG/Jeg5YgqIbQ7oK0WxcwwIJkCeSNxQh2+2LVWM0VUX05cAJW/5LGKDkwUwiXWHUulfyh678PzuQJpB4BVBDFy6oLlkoQTENYkDn/sTY8SL+3/sIXf/zbyeTEb+YRYAXRMAQY2lUMj0LcoCfIdibG4aM5z/QI8k4+i/W6vP+UYMNckI2N2o/oAhu5IY3HPf3I8AhxFX9WibeP3I8aelvSzyZHLg8+Y1dM8H6RHnzcPYulR9+ZsRSH6sqfgSLK39HQgdXASyE4y+spsObu7mOXgd4tU8dWzyyWDr2njlMzBPzjoy0IniEsSMn4UVL31ovMIQYjRQR4QZAGIsSrfB6FuEBvDLI5lkHurRezWNUNN4KgGEK9A1JvX5DoCbK39shHg084OFdkkN2JmwyiYYiTEkulB2KVHFgphEusktlbp5Lk8ODOiuXYY6sYizQFmd7WCTd8gvdRQ+A/PuKCbLAg8GiOQUZ3Vry3Pnn1Qs8s1n7Wp8W+WGIvE2nKjfx+Wjx2feGxzmuEzO/5r7Ko1zA8CoFHL4MoXKNwd11uBjle7XFSCTK7dnN6WxyVfuNm5kpmyI3b1VHqci9GcfvWdbkPo2REEP+GkO+A1NsXIPAHTN1/J1Pk5xfmEUpB9r78dno7+yX3bM9EyI+2zXdzL2/LnXrLveDHBBkxxEECVuuAaCUWksFcYtlFqATZuTMfg2SCTGvnNikFkX/LXd9HBRk2ZAkFwTGEBan45tKl4Z0VuyJUY5AbO/9dCiIcuHVzKo4llJQllkwe6oKoblSHIogai3QDgwN6kN4RYT6LJU6rKPp+NiK/XhwBUqWRfHBeCJJ7pCCIZ0Po9z/6LQwMPUF+XOyoKPZZ7NxZsStCY5r3RnFobWaCHJ8X2WJ/RxxgeFU7g6QDirhIwErdD7HEQhGES6w2F9eeG95rsRahIcjsWp4dMglu3UwrGcojb8fHIOqGLKUgGIawIB1Mk2OqEUpBMgmEIHfKLJH/zTNK49D0wVmsrpXvr8yiX8HQb2FYmAqyf1L73LzZ0GJ6+9bVrJS6I8ceMpkU5zkRJZasuW4MbQfp/QL3a4inUIawIaCYC6I/SBdb0kVyKLeaF3+lKOVW9vJEcgJ1QToNcZKAVXofaomF4DCXWB1sG53d3W5frKF13zEQcSbIWPcjIIhXQ1iQkurMij9ZS/THINroCOJtvjeAAoaLLECMt4MYzWJp0dHhB9e8H0MC6HwsCCCmOyuq6lEIYtJ1O14zvOYXDHGTgBV6H3KJ5V1iLrHsIogQOwZ0vNfImm++aLkF8WgIC2IXATDE2Jr3UWWFUL9wkQVGXIL4MCSEzhdCGwMhLEHGv75rhjhKwOOdD73E8mwIl1h2EbwKUjPE1cfHgvTH9QsL0kJhvTuvsoKoX4JoZAjEJ4jzTYZh9L0wWkkfvd773rOqxxHWIvgWpDTEWQIeawSBEsurIFxilajvoViP4F2QQhGnggy1goQgHg1hQUpoCKJsiCvCqF7CaCV5dK8PMnL5g64IGIK4HauH0fXYEAg098V6M0mOjlwnvRUBdB5AfaU7NGSk69EosfwZwiVWifFZTeDQWOfuDGFBBuN6g5wgKqcebUfAEsThQCSQ4oWLLHsC2w6i1zWdGRJIzwukmaSJWBCRgB0ZMtzzqJRYvgzhEqvOxTePPnN+/x+Gr6PTiIApiEtDhgMj0BGXBbFFs/funZLD82y0rnpIOmaJJXBjSCi1CxdZtuj13kyMZ3938tD52W+T5LRqBHBBCBgSTMcLpqFU0byIZ3Kk2Jy+nd1SjAA7zFFf4WUCdmbIWGDfdMX1IQiXWCWzsytvF4LsreFsBzEQxIkhoQjiwxAWpES6kQuid2ZFQEzWtwNDwildgmkoTTQFCSmD1HBkCPR7OiEclUmiOwY5lgsy2wxnDCKA32Q40O9IlVgeDOESq2JvLXnu85OH/u3zU0mWSxQjUBAE3hAWZCyue+gJIgzJWVGd5XUhiNHqhlYknMqFiywLdHvv7H15/bWX1Q+9pSIItCEBdbuAmkqO0PbF0vjmbidgUEP6ex2xEsu5IFxi2UWgIwi8IaqBvdAf160hLEiN2UVxpdtn/0UjApYgXUAaElLhElJbaaHZe6flIP1h1UksWoKAGwL2Zm5hQUzRnuZ9+NeXLl16/2nlI25JlVgpqCF9LaFXYrk1hEusis3yrCZ4GwptBQE0pK/TURTEZbpjQUrkriY5aLua2H8XwhoC9FbO4SLLDNMTx6HtrAjQLcEMCarTBdVYOuiWWOUG9L01nctAg6K6ovsTMJQhPX2OZInlUBAusSruljXW3VNY+2JBCAK2UT0kQdwZwoKUzN76SZI88/IH/5r9eVj19Ir0SqwUzJCwypawWksE8zMrqp5ekaQgQGVWWF1uNazm0kAzg7y0AOUMMpKAwQzRDeyM0biOBOESyy6CC0FUVvPYxwdRZnW2hawgjgxhQewigIeAWstQhkC0xRNcZOmyzIJAKBJYjwusuQSIWBCVBGxtSFePo1tiuTGESyy7CJQFsR+rByaIC0NYELsIhEssgaUhoRUtPNerR6iC0DIEqik+YEG0iFgQ5QRsZ0i7NaRLLAeGcIklaG0kxLmIpwRYEABDDAPDohqXBdFAufe2djNB293dQVVjZUhwJQsXWRqoZ5D6BTzxLuIpgV/BNoaE19/CazEeIY5BwEus1N4Q48CAKMcFnsniEssuQhCC2Biy2N3ICwJsCAtS51LOZ7/7G9wxCHiJYL5RPcCKJcAmI6HZe98jM0iHX71sCNNGr/duz/14WPXkig4EUaux9BOwqSELvY1+iZWCGsIlVsnsbHJMXqdw9p7yabFCEsTKEKvAIOgLAmMIC1Iiz4u1LS+Rvo10GegcZ/WBYZkVYsESYpsR0D8v1lQmD8TT/qQut81ZGALeFsewISroC5KrgXjiuFRx3RomYCNFGg0KosRK4QzhEqtCnDguP/8o3qlHBS4FMTIkXEEADGFBKqbJyivZSP3I5dlmglliOS5pbA0JBeAt6lGi2Xs3k0Pniwt5Yg7SXdf8+oaE2dXCbLVXdHvvxb/JRiGnkuSw8jWm0ASxScBWhoRSYqVAhnCJZRchREH0DQlTEBBDWJASGpc/ELgvDYwMcdMUl3CRNYKpILizWD7Wq64hgXa1QJvtDfUDps4uHFGIOoul8n1tm4A1DZn3tJBKLAhDuMSSTJt+rKDOYvkQxNiQAAWxMoQFyfnm0ucnD31YHA+iEQFLEHv0DAm1WOGtIUNoXv5A9VQm9QjhCqK5UT3UjsaGDBDoNK9KZ4RIwFqGlG0Kq8RKrQ3hEksgskfj3FiI58VKvQmiV2YVjQpOEMvcx4IIxBRv49xYqNO8Hjc7aBgSbqkSbstdo3FerN9fbpwba+i8WPfWX/iiihC4IGzIUuOk9x6cmxAQBCwBqw9E8m4WXollNwzhEkuXK5OoBNEzRJSfYJG1sFpgC0NYkBqziz8+evTos4P78t5b9ySIv5pgxJCvksfzG7kfWIZYwZO9nWiuyulaedaft3ufkxVYf+d+DOJ558BhQypB0nIKw0ebgGFDutBbk3trycO/vnTp0vtPD0xibU1e9DBIHxcENgEPGlIJMp/kAw2uhu0CmxrCJVbFZnIkn7uabfaeGGs3K68iFKTXkO8yG/4sCkFMDWFBSvLzNUh6d3d/cOb4u/Np3qcE2XJswP/kE0Zu3rvzRwzV249/l/wg+0n+PL9fF8Rn2wA/01UC7fDy40SQ8QOmtiave9kOgnCAUudklqyuniCRQQDgYcgi+qf9yek7cdwVOX/lS5DBdan8JaFOhyFPPPRkmn5NYpAOscAmhjj4oOkE1luTd8sa6+6plc5prHvrWYHlR5DRFOLi42sbsiBIipg/wATRNIQFKZm99ZMkeeblD/41+/Nw5x6LVyYVz39SRMASxAktQ2SJNZ/mzQ0JuEzhyd4mmmOQhcNuW5O90QvSMuS75CExkfV47aGwexgb0kAzg7ykdi3oaEustD1Ub0zzSrB6GNACaxvCJZY23gQZWo+uPr7RPbM2kAyBWmBdQ1gQbbwIglfKjBkSepHCVdYcNxfxjFwQNmR5CPIingVIJZZg0JANJEEAF1jLEC6xKqhcxDMHUZDBgcgGUgqBXGAdQ1iQEjIX8cxBrQOGh+rhlyhcZeWEeRHPAtxVyIYsA2FexLNgeA06T8B9hsjACL0LeIGVDeESq4TMRTwLkAXpM6QSxLMh0AusaggLUkHlIp4F6EXAUJWF3jh7uMrycxFPkwuPK4G//gaG6viNsyeGZbDEx0U8Da47rsjg+vOS+bsMKQJ7710OFlhpGbjEqmFyEU+Dqyorgi9IV5kVkSBKC8GC2EVITK47rgaJCqB36WIoUJZ+GOLn8geuDKGx9vqWjkbrLFldckWMBLn4oU4EEcKRIYPrzl/mX1i6KrDnruVmgccN4RKr4O7f51O7s7NDJ1ZsRZAhHBrS9z+P6605VJ8H9muIowUeNYQFyRGzV3Lqavbemvo1PMvtIHpXM1OFSvbvWbpIqpNlrrLUBdk/mTzyUXF7tqm8t3u1odCJIXRWHBsSJ+qCbNc3DYr9elUjVCEcKDK04jxn/vnC1QJ77VgOF3jQEC6xBJkS9apqqrElvbrpyJCef/leb9XC1QP7NMTlAg8ZwoIIFvZONNxZEdwQSqm/0/9YipNlrbI8CwJuCKm11mVINP1qSQ3RKLEaJxs13psX2BBimV8uXTOwv37leIF7p3u5xJJs2o9BJMADEVqCSEMWAnszxPUCF4a0zj3Mgkim1rNYBbCGUMv77YWLpzSp/Aj16g4GqC+pPA6kvG2wHaQGpCHkel/MhlQXKV0eQ/S2pK+8/OHldPb5P2W3lPc16fosAQ0hVmKlXRnSkyBeKo6OKwRxiVVw99T8rFgfjT+9jNAVAs6Q/q9ntPXWMsRTCmFBHKCXKj9/8+nsozn8U3U9+o5JhzUE6K3AQDLEA6FfY04bP8eDdABmCMm+t7B0LEiwoAkCZkhv50PN/BiGwC7w948myUPth0s/aovDJZZdhL4QQIbQFATDENAF/v5RceWsH7b/UfoxXxwWxC5CbwhAQyDeB5jm0gVXZH2dPNbzn9KPsJbHFExBgDYZUl1VYRvyVeOqci2WxhBUQWAM6VtV6JnftyGgCzwiSH3PLPQP2iW4goAoQlaQpiHuv3NBF7i/xCqYG4L/QTsEWxAoQyzfwhGNhQurKBGDdPHTT+/evVFhKsjssw9+r7Y77+iMubUhhFdT0IZ0TvPWWQZFTAXZP5k8rbZD7/gmJVtDSB+mUFfEcXfyv8DIhlAuscQRhdPnVHKIwjZXCEPaj9IQpG6I4+6EsMC4hlAWRCOCQghLQ4jn+QVDUNsCTuxllrkg30Begs3OEOpriA0JF/WTNvxj8/6nPwK9wpSVId1riEiJJWga4i+uF/AMIVVi7Z98rnZv9p7yIYWK+31aG9J6kJAg84GIy76EtcAbWIYQEySZGyIOnYK+yq2NIfRzvBdD0Ii4ytI4acNaNa376VqifM4G9Yt4WhgSwvopFi/OvhTvQERjkF4akpVX+pc/UMF8o3rn2qFUYgmcG4JWYqVIhpAqsdLSEFFeKW0AKSOoh7AzZPExaoI0DPEZ1zXz68J7VoSaIOK8Jsey8mrlFa0IOiFMDQkjv7s2BJc4yyy97SDyCtAaZzSREbRCGBoSyKpZCkPiWjLNDYWZIUc0yisZQS+EYZnVsWLIlVhpaYijfoRaYkk8G0KuxErzKkszgmYIM0MCEcSpIfiCeE4iFAXRN0T/BDEmigST253mEALEVmbpbChsArwlvY6BIeGslXzhwmmvLpGNREgKYjJWb68TkiVW6tAQAiWWxJshtEqsby41+YNqBKMdhrUNaa8TqoIUisB3IiqCeEsitAQxjmAWQteQoNK6MChkd6EAABUQSURBVCSqQmSReMossoIYGWIWCYMlMST8xaMriK4hrfVBt8QSODCETIkl8WDIUpdYqa4hgQlSGeI7Ljw9cd0bsuyCGBhiHAqBciCC3Q53xFBmkRZEz5Dg1sXSGBLyEtIWRMuQxVVBvMQSwBpCrMQSuDVk6UusVG+jeniCwBpCUBC3irAgqZYhIWbz6Kus0Oss8oJolFlBrgY2hDYBCKJnyPxeCCVWCmkIyRJL4kgRLrEKVMus5koIRBA4Q+gK4kgRFqRE0ZBAE/kSVFlzQ0JbzDAEUVUkwBUgWApDAh2KhCKImiGNFRBKiZVWmwy9x4VBOS60IlxiNVA1pLwdkCAwhpAXBFoRFqSJgiHhpfCSXBHsVjgnuKFISIIoGBLUZ99kSQwJTZGgBFE0pLgZUoklWLU1JIASSwKmCJdYLUYNqX3woQlibUgogoApwoK0GTMkoOTdxjqHhEMwdVZogigZAhrQJ0tkSCiKBCfImCHzDz24Eiu1NCScEivHWhEusTpRMETeCFEQK0NCE8R6KMKCdDO8UT2EvD1Abog4dSV2S3xAf843REGGDaH9eY8jDMlP7lo+8nXyGGJ7HENdkSAFGS6zyk87yBIr7TBEVZDgSqwcc0W4xOpnwJDyww5VkDTZKRXJ70cuiLkiMQmyo8/w244YArsMfkkqQ/L7Xyd/liQPPYnbKLfQLbQ8CWJwzSgFQ3qeQfOTVkeokRuS3/86s+P7Rx/CbZRrVok64kcQowtz2hkScolVGZLf/zr5oVKdFWyJlaOvSDwlltm1nUdf1WdI/ikHK0hlSLFF5Ovk8TT9TljiOK4hYHF1FWFBRp/RbQjBTK1H0xBVQSKAXqEFL8iffjmZHH/1wjyCQ0GiNmR1VSpSVFdRbwypQ8wRcEE+nkiOv1tFcClIjyHy8w23xCopDFEdpAdfYhUoKxJiibU7Of6rNL1/bvL8J2WEhiC3slX+5bcdL7zbflBJq+6hOuo3ENx6k0lk9X/LaV6fcfWAj6uoSICCHJybvCH+PjiT/02bgsyuXU+FJHdaL9zrsEYt73QaQidF25Ebgt0KBMgUWsCCPDhTZI6tyetlhJogN67LP7eut15oLkh3mUXgowVhdZkOEWliqkgygua7aUZXpVOQ/VrqmF3b2bmZ/d0TGeCO+H17L9+CXqmiPHLpMATzywc286sbEk+JVTCWRroCjwqgaYgjQR6cqUbpNUFqaWJ27ab8kQ/tZYZYZJBeQzQbDQWwIKuq58yKTpCaIZ2L3xFYpftr9XlHglyZvCj/PiXYqAS5Wj1hejX/VT7UI8jGhtqPMKT5WLGxUPH1pH8KQ9DbgfJTc0Tl+Sr9Ocmfq4YbQXa7p3lrFkyvF/dvFJWWVQbpGqrHMgpJyyorlqXRZSSNNFEURB0nguyuH3+jutMxBtn/8ttKEPHozlV503gMIp+8aAjeKET520mdHZXTWzuIq4T7uD2OdAQOQpArtfzRnMUqpq9uXU2nQoNpUV/t245B8qdTMcRFh1ExJF5BehQJVJCPG370bAcpB+nSkcyO/Y5tI7rb3xcMoTCLDseOUhKJGaVSS/Tn2dlD57M/e2tHav/YTJJHLs+fowy4IAdbkxOf1B9obkm/UdZQ5TTvtHjghrzXQHsHFTYkblbHHZH9eW/tWPZ7sxRCsHls/gCuIFuTF75oRnC6L9bCK+qKbGAJ4qrkKAzpXaSYS6yShiO9JdZ2lkL21k7PH977i7eLXymyIFcW/fAqSMOQDawU4qzDjBiyDII0th72CrJ/8ki6eUSkErntfOXtaT2bYAry4Myk5MUygk9BFsqs2EqSnbEkshwUggzsSDJd+eciXeRsH5kmiRyZpLiC7E6wBWkYEl1nqgyJaqkM6PsIiv48O5scqz+8mWT5ZEpiDNKO4FmQyhCRgFH6ktOSYyCJLEeJNRy47M/TMl3kyPH5/snTjecoEaEgpSFxCjKQRFiQRUGqMci2mPFlQaoXzsusGMuRypDYFgyAngwi7+7/NYFZrI4I/gVZNMT4fYjChvTSI8jsbDYk2eYxSO21Ozt5AkboR+5Ljm5DuMTqFUSM2olsSW9HqAkyva3zShtBqqF6lILIpVPZNckLFAUZgqwg+9lqzfdW3K/2NqkdfJvvr3hj/piVIJiGeKBmSHwLZ0HIgsyu3Zzezo9KvyFckHsu3qgMmV0TD966LvdhlNgJskSGxLd0xoQsSJYhprdFmtjPd0/cq35Jbv2X/Ned+V7wloJsFEN1733IT8khF66hCJdYSofc6h2U7lOQnTv5GGR6c68tyN5VecyUuFvu+m4rSFo3xO69NAN7oa4/6gVRKAkyek4T3dOa+ByD3Nj572KQvtcqsWbX5DFTMnkACSLfAsUQTxQ1JNdZLvE6iyVOqyj7fpE3agPyW/kJTgpBco8ABIneEFbEMb6neeXwvKykxEGF+XhDnNwEOoPkCXheqtu9m3ZgHywaEs0x+HQC+xZkdk1kh73qiPQil9zKz9dwB3YMkr9LNd9j93bagb3QmKpDUoQFsYtQCpIJIQQRnb8lSFrchJzFKvFviE+qnWpWcdNIrHgUJBtaTG/fkp2/KrFq20HyB2/AbQeZE/VBFAs7Zka7nEj43pJeDDnKE2KJQXpeddW2pJdnb4ApseQ7eTXEc8lR7Zm5gaQIl1h2EXD2xWp+fF4PVfXdYUpDqgNgPCvCgthFQNmbt/VeUR/M3ToQP+Jl9cyyCBL5aaWaZwRjReDwJIhJX7f1YyEB73g7AzRGySFPbz+/61URLrHsIogQOyZYBm59fL4MQekw1RFiBR4VYUHsIrgPoYq3HILB4lfKfLge6xJ7YakEWS5DeMMIBBEL0pWAvRiCttt5uyz1kka4xLKLQEkQL4bgHZfRMXBbde8IC2IXgVCJlUZeZXVeEZtHIzYsnSDLaIiPNBIrEQvSl4CdG4J66Gvf/LhDR7jEsotATZBikyFCYMdUR4j1bEFy5QgLYheBWImVujcEmf5trKtca+mylILIC4/vrGqf4SIUhvZCYEf0iFiQoQQsDdE/B4x9YJfM4w7vpwPtCJdYdhEoCpJ1EneG4AsyMBDJAXWEmCCgp8WKWZBhksRhDsFnfGfPSGut0fVJ8sRxBEkqQ7Bb4giF3aEjdERldRI89SgKw5k/yQ3ZcdA8AiWWQOmAAQhFKJVYgZ68GoVxQXJDPAd2x2JcxUNqrPMIC2IF1RomKRWJpLjoQPmgs3hqLRYEjuUwxESRgCVhQdQZzfzCDzndC9whqJRYqY4hLUfUPxNqJdbsbHEN6CONf+39xdvz5yizzIJIHBhCSBCNMktiJAk1QTI1jmW/N8uLdubMzq6wICYUhoRbVYyge/aLRUfC+mDyzradpZC9tdON/2wf5gxiCBuySLiS5J1t/+SRdPOISCVynClSx96P/h8L0kQ986/CnlSOVImVGhmS6khCrsRK0+nKP5c65MzOnuYxyAI66w3UEGqCaA3VG7Qk6fyECAoyO5scazy+fYQH6VZEf2ZS49PwtSWh/CGVnW0qJ7Iq9n50ngWxozSE8tq3wO5EleFI0hSkGoNs5xu9Tjeeo/WG7giixBKAJRFyJZbA+lSuHZKsKsR1STtw0pNBBJxBFtBeb1BJhKQg9oYIOi2hI0jSV2IJWBB7diK/VhvMBSW6LKHwiYmexoIA8rUoS3/QeKgyhMIKhwbMkLRHEtwPLal+qTxR612dQrbE+i75YZo+kTzeeHBuiPnaplliCQANEWA70ljgpPZ7GBYkZ6y//P8nU5FFHms+umOfROgKAm2IADGV1Bc4afwZhAVR5StRYz228OAORBIhiwNDJNgVV9nJ+JBbOL4TcrQySJp3IhpltQNcGSLAG5jM+9jYOU10T0IQsSBjFcdXDz0pkshj7f80DNFfwYRLrBR2qN6O2+2II0+qwA672DILIhNIlyD516zxyqUtCLwh7bj9mrg48MZpD4tYkFEezdLt/xJTWW3yPoRTTrvHZZlVY0ATyM/Tbf9aZkGGKPtQnI54MkQypAnEZ+q4e0UsiF2lU/Uh/fVJvMQSgBqiFHfQE0NRRGDXvYsF6aPWhzRXZQCCgBqiE3fYE/3BnvPOFbEgttT7kKv6GQ+fVVabEU+UP2IP3dd9hFAFWZjuic0RXENyxjwZ+6A9dK2IBbGvdBYnRBXXXQglVgpoiP3yjovS9XF76VksyCCtbQYqX3CBCAJmCNzyqohSfegJX0CHAB1b1fSqAMpQqLI6UbGkp1vxria+6epFCvk/CMgaUtIvSK8fo++p1yEjFgQqAStceLzpSCglVgq024mX5e3ygy9/YAXYelO8rHIlSUCCgBjieXnnnzQLQoTBThR6uUW+zNKCBUFhrBN1DSKDISpDWBB1IDO/3jVjkTQxXWDbMovOaX9YEB1A15v2FTERNDFeYEtDqAnSdQGd/ZNJUp4JiAVxgenFzMKouuAPM0Si5wI64noI1QMsiBPsLtVE3ZNYDOm5gM5UXiKkOHMcC5IDnfmV+9A88IAmDkQBOgDGc1wLescgHRfQSVmQRcDXm6ohi4EHNQE0Be4AGK9xzdG4gI6ASyznWNUhY56gl18RVFllZ2tdQCdjmy/i6R6APqTiCZIrgRsi9kPsP3n1dlKOSViQHCeZX6XMUr3+tAZK7whyAIzBq0iUWMVeuk1BamOQzZWq5GJBctysNwVDNANrmTKkC8ACGxmCL8h8H/a+DLJdu8+CuMXhjKi+KxoJRokAq6zGER49guzVh+wsiGO8bDMwdcXWmsAMWTz+qUcQvkZhBw4z/3Avgg9sb4u6OvqGoJVYHUcH8r5Y6rhcb4O9yHmHceuLdoLEESSzI8ydFQ/eWZ9MXr0wjxBdiSWgVYnAClO/QkqvRrj0HllO//ogD85MBM9/UkWIUhBihnRhp4jFq107NXjehdHuhn3Shq3JCxfS++cmL3xh1iA4HGf+fkPIH3KrYAiEH9DIttft6F5g0JOagAtyb13mjgdnjr9btRc4hCqu+2mvIeQFWQC746vSyh0hnhfryuTF4u/rZYQ4S6wM6jUWLNh6rK6i9CTomFuTN+Tf3UKUmAVhRgAWBGUZgHvvwbmitLq3Xg5CFE51xzDeoSHIUwKkTwArLlrgZYtrFxhdkGqi9ynYEMpgxV26BY76g3ZfYvF647gBB2ZB4gm8bHFDFKRjFothAgZ+O8jrjb8MEzTut6QzTMBAC3JwbnKiuS8WwwQM+Gbu+4t78zJMwMDvB3L/ncyPV4v8sXhwiC/+9MvJ5DhCXEltBs8bBx9nH/Rf/cp32PT+LycIK/jBmXIKyHkHc7ujVOvgEE98LMNOcMZBBwj1ZZG3J695jntvHeWD3irnSN13MLeCtA4O8cPu5Hj2XZrFRSn0rky8C5KP/A7+3XdPFd8F/lfwwdakFMR9B3MqCNKUVrba5MaY7OvlDZ9xc8SXqm9Bdouvgiuetz6hrOA//WJSCuIhvlNB2geHeOHBmSJzbCFsjMns/DvfY5DyG8E7xeZgr/GzBP3aH6uO5byDORUEe7M6hiBZeex9kF59I/gGI4NcOfGbqkN56GAuBenaMcsnGFsrd7PyyvviioB//NvJJOs6fqnGIJ6/AKvM5b6DxSyI74o8LZzEEOSdfBbLd8Y8yOcLX/M+5opNEIwSYBdhmlcWdd4F2c37aNZbfS/xvV9IQU543hDSFsRZB4s3g+yuH/c+cr0i568wBMlTx5b3WSwcMePLIP4FuYKQP+6ty5gIJRbSB72FJGYkgmDOYvmvNlI5A1nitaasKgzPtSzaN2Aks1h4B4ccbE1OIIx6sASpOuqu503a2IJ46GAxbkmXeyAg7m3vv6Lcqr5R/X4TIZdYwW9Jxzo45Aru0Sj+BckGy69eQBksow7SfXQwtzsr4hwcUuziOal22fEMwpzEbrFXre95u7Ko9FxCV2MO9x3M8XlBGweH+GJ3snSCZB90psjP/R8A85/ieBDvceeDcucdjE+cyzADsCAMMwALwjADsCAMMwALwjADsCAMMwALwjADsCAMMwALYsX+yUPn9f6RbianHTaoi+3kWJrO3n+ueiC/LR9mRmBBrAhHkGlypHogv82CqMCCWBGEIJK2IIwKLIgVLEjssCBWqApy8cdJkhx++XIqBbn4dLIib6fp3Tezfzz7USr/IUuebdF7p8mxT9eSh9/OX529ZO9U7SVrSfKMfMni0+ZvkL3k06eLd85qqdlZcWHXXIvytiyxirf+P2n6H2vJ4X9ZDMCwIFYoCvJecelh0UM3k5eq2+l0Td5eOZ0uCvKX2X8eyY3I/vOzteole7WXLD6tLshR+TTRimFB8rc+tinf9O2FAAwLYoWaINNkRXw3fyo7YNYTH/kozb74T8u++Owf0tl7xT/qglTdPm2+ZP9k8tzldPZb2fUXn1YXJDlyuXjJ0CA9e95zl7N3S1ZeSe+eFY83AjAsiBVqghQ9N/vqPi3uyP9si669XfTazbxP1wVZeTutvb79kqLXN59WF+SRy+VDw4KI52WiHpOPLwZgWBAr1Afp33z2T6eSXJBj5RNyY9KiZzYFqWWG5ksKJfbWsmd0Pq0Q5Eh1e1iQY/Kd5buKt2sGYFgQKxQFuXuqGIScrmaxREcs+mXx7CFBqpfkA4hyeDEkyPy2piD1AAwLYoWaIGLYu/LMzz482xKkeFKHIPWJ2MZLmoI0n2YiyOm0IUgzAMOCWKEkSPalfORyOh+DKGWQXkHqow4ngtQDMCyIFUqClH0u+3Kej0H21obHIB09v/GS4nXggjQDMCyIFVqCTJP5vFHZdWuzWPmd2dkuQeovyYcd0qnm0+pvYCxIMwDDglihUWKJjQ3FlgexhSKZbwf55k05W5v5I7dFdAky36iRpaFHPkqLO82n1d+gQ5B5f89v9wjSCMCwIFbUhrSns+4+L98b/5jmNx75bd518y3pcu/z+pb0fP7o0P/tEiR/ybHaS+Trm0+rv0FLkL3aJvf8do8gjQAMC2KFmiDpxVNJcviVcqhxOvt2Xnklf15tX6x0lt1++KNp5yA9e8nh6iViVym529TCXoe1N2gJIva1qnKIvN0nSD0Aw4IAsv/XbiaAkHYAZlIWBJRtR1sOWBA8WBA4Zn/vaAsCC4IHCxIALAgeLEgAsCB4sCAMMwALwjADsCAMMwALwjADsCAMMwALwjADsCAMMwALwjADsCAMM8D/AD+v3ycizbkKAAAAAElFTkSuQmCC</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output </li>
<li> False. Costs and output each increase to the right, so it has the same output, and a higher cost. </li>
<li> True. Point e has more output because it is to the right of the y=4 isoquant, but the costs are higher since it is to the right of the cost=$36.80 isocost. </li>
<li> False. The production function exhibits constant returns to scale since </li>
<li> False. Point c is, in fact, a cost minimizing bundle for quantity y=6. You don’t have enough information to say that for sure, but it’s quite likely from the graph. </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="50" format="html">
<text><![CDATA[<p>
Points a and b are each cost minimizing points for the firm at different levels of output.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. At each of these points, the isocost lines are tangent to the isoquant so they minimize cost for that level of output
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
Point d will have higher output and lower total cost than point b
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Costs and output each increase to the right, so it has the same output, and a higher cost.
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
Point e has more output than point b, but a higher total cost.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. Point e has more output because it is to the right of the y=4 isoquant, but the costs are higher since it is to the right of the cost=$36.80 isocost.
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
The production function exhibits increasing returns to scale.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The production function exhibits constant returns to scale since
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
It’s clear that Point c does not correspond to a cost-minimizing bundle of inputs.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. Point c is, in fact, a cost minimizing bundle for quantity y=6. You don’t have enough information to say that for sure, but it’s quite likely from the graph.
</p>]]></text>
</feedback>
</answer>
</question>
<question type="category">
<category>
<text>$course$/Quiz 2, A2/Exercise 2</text>
</category>
</question>
<question type="multichoice">
<name>
<text> Q2 : private_fall_quiz_2_q11 </text>
</name>
<questiontext format="html">
<text><![CDATA[<p>
<p>Looking at the following plot of market demand and cost curves, which of the following is/are true?</p>
<p><img src="@@PLUGINFILE@@/plot-1.png" /></p>
<p>Recall, AVC=Average Variable Cost, AC= Average Cost, MC= Marginal Cost,MR=Marginal Revenue.</p>
</p>]]></text>
<file name="plot-1.png" encoding="base64">iVBORw0KGgoAAAANSUhEUgAAA4QAAAJYCAMAAAANG9jpAAACrFBMVEUAAAAAADoAAGYAAP8AOjoAOmYAOpAAOv8AZrYAZv8zMzM6AAA6AP86OgA6Ojo6OmY6ZmY6ZpA6ZrY6kLY6kNs6kP9NTU1NTW5NTY5Nbm5Nbo5NbqtNjshmAABmAP9mOgBmOjpmZjpmZmZmZpBmkJBmkLZmtttmtv9uTU1ubk1ubm5ubo5ujqtujshuq8huq+SOTU2OTW6Obk2Obm6Oq6uOq8iOq+SOyOSOyP+QOgCQOjqQOv+QZjqQZmaQZpCQkGaQkLaQkP+QtraQttuQtv+Q29uQ2/+ZmZmgIPCgIPKgIPWgTPegdPqlKiqlKlSlKnmlVJ2leb+rbk2rbm6rjm6ryOSr5OSr5P+xIPCxIPKxTPexmfy0Kiq0KlS0Knm0VFS0nd+2ZgC2Zjq2ZpC2Zv+2kDq2kGa2kJC2tma2tpC2tra2ttu229u22/+2/9u2///BIPDBIPLBIPXBTPfBdPXBmffBvPrBvPzBvP/EKirEKlTEeXnEnZ3Ev//Ijk3Ijm7Iq27Iq47IyKvI5P/I///RTPDRTPLRTPXRmfXRvPfR3v/TVCrTv53T3//bkDrbkGbbkP/btmbbtpDbtrbbttvb27bb29vb2//b///hdPDhdPLheSrh353h///kq27kyI7kyKvk5Mjk/8jk///wmfLwvPXw//rw///xnVTx/9/x////AAD/ADr/AGb/OgD/Ojr/Omb/OpD/ZgD/Zjr/Zmb/Zrb/kDr/kGb/kJD/kNv/pQD/pTr/pWb/tAD/tJD/tmb/tpD/trb/ttv/tv//vPX/v3n/xAD/xGb/xLb/yI7/0zr/05D/09v/25D/27b/29v/2///3vf/353/4Wb/4ZD/4f//5Kv/5Mj/5OT/8ZD/8f///7b//7///8j//9v//9///+T///r///z///843lcUAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgAElEQVR4nO2dj59mV13fnzCAcReDULiDs7sEo5BHd6cs29WQGqvVNrNWVmWcFC39YVJJW9TGVttifzxrXG0taAxBMZbyJNuhFTtCC5VYVmDbJlAmNSFIOyOuMzx4/pHec+499+c5956f93vOvd/v67U7c5+Zc+7nnvt9z/f8PjOChoYGajNoAWhoUzeEEA0N2BBCNDRgQwjR0IANIURDAzaEEA0N2BBCNDRgQwjR0IANIURDAzaEEA0N2BBCNDRgQwjR0IANIURDAzaEEA0N2BBCNDRgQwjR0IANIURDAzaEEA0N2CAhnM0u22WwZavANgPo9CggfgEEHEI7CsELEDo9CohfAEEI406PAuIXQBDCuNOjgPgFEIQw7vQoIH4BBCGMOz0KiF8AQQjjTo8C4hdAEMK406OA+AUQhDDu9CggfgEEIYw7PQqIXwBBCONOjwLiF0AQwrjTo4D4BRCEMO70KCB+AQQhjDs9CohfAEEI406PAuIXQBDCuNOjgPgFEIQw7vQoIH4BxBmER296m8G9EULL9CggfgHEEYRP/oUkSc7eV1wfnT9d+cn6uavZxWpnniT8giCEI3gAFBAKhFeSzN7IP1gkp2s/WWdh8ug8u3jNLxb3Rggt06OA+AUQJxDuJ8mf/w9v+us/n7NGVoskh3A/Wb+LkMPtDLxFcuoqvTi1y++NEFqmRwHxCyBOIFymyNE24SILhU9eSHIIV9vJm+nXNASmXw/mDMWj8+u8+YgQRv8AKCAQCBcpYmXHzDJJNp/IIDw6n1c9GZ7LPDwui2orQhj9A6CAQCDkkTC/2rgvrYaerv0Gg3CRhcXKDymEVhSCFyB0ehQQvwDiBMKDebJ5rTZE0YCQ1UBX23k19GDOG4Wz2SWEEAVMXABx0zu6P2cjFLvlB3UIWUW0CeEJapcurW2hoY3VBoSQrB6mGNKeUBGE+6zbtAIhH6RII2FK4Zr5fcH/ikGnRwHxCyAOZ8xcvJDkjb4GhPvzdfq5uDrKKFwzuOH169cDKEDo9CggfgHE6bS1K8UIYBXCZT582AXhmvb9riOEKGAcAohTCMt6ZgXCK3wIX9g7eolTuKZ5P4QQBYxEAHEBIev7lEC4WiQbfJYaHx+sjROaUogQooCRCCAuIFxtp1RRCJft6uiinKMmnjFzyZBChBAFjEQAcTt3tNUxs6wwSGHdaM8drVC4pnFPhBAFjEQAcbuKYpN/sM+nrSXc6PWhaBVFRiHRpRAhRAEjEUBcrifcKNcT5hDuJzUIyeFO+t253fLebNpalcI11TteZxSCFyB0ehQQvwACv7L+Mskp1AyGCCEKGIcAEg6EBYVramkRQhQwDgEEfqMnOoE7h1ALQ4QQBYxDAAkDQhMKEUIUMA4BJBAISwqVMUQIUcA4BJCgIMwoVMQQIUQB4xBAQoFQROFaZ1o2RgFegNDpUUD8AkgwEFYqpEQtGCKEKGAUAkg4ENYpVMAQIUQBoxBAAoKwQWHv2D1CiAJGIYAEAGE9FLYoXJMlRghRwCgEkJAgbFHYjSFCiAJGIYAEBWGzQtpNIUKIAgIXsKeaRUgQtinswDBbR2Fp0G9wzC44dQF7e3FCKKBQ3kGDEKKAcAXsMVPMIkAIFSlECFFAsAL2IoZQSKEEQ4QQBYQqQAvB4CAUVUglFCKEKCBQAZoMBgdhF4Vrtc8QQhQQpAC9qii14CAUUyjAECFEAQEK2NNnMFQIpRSuFR8ghCggPAEGCIYIoSQUtoKhi4FC6Dc4NhecugAjBIOEUEphA0OEEAWEJcAMwQB2WxMd1SulsNZPihCigHAE7Jk0BnNzt/nv2XLz36PzlfMJy4vVzjxJzl0t790JYReFa/RbhBAFhCLABkG32+Dz05bIonpIaHFxJNwGX3hofQeFJYYIIQoIRYAVg04PhMmPW1otkhLCysUiOdU+EEYMYUeFtKQQIUQBgQiwQtAJhMuUMtomXGSh8MkLSQlh5UJ4NJoMwk4KOYYIIQoIQYAlgk4gpEfwlh0zyyTZfIJDWL1YFl8rh4RKIeymkDiiEPoNjsEFpy7AGkGnkTC/2rivPCS0eiE6LrsPwn4K7aRDv8H4XXDyAhww6ALCg3myea02RLFf7ZjJL1bbeTX0YM4bhZ0Q9lHYuxOUikG/wehdcOoCXCDopnd0f85GKHbLDxQgPEGNQrgls4xC6Y+3MgrlP0dD82wZgvKfDwghWT1MMVy/SxFCPkgxm5GuUKgYC9cshEP/HY88DkxcgJswSBzOmLl4oX1mffVCWB3thrCPwuvXbTGEdqGYXXDqAjiC1k/gdNralWIE0BWEPRReLyhcM5QN7ULxuuDkBRRhMCwIy3qmCEJh72gfhN0DFWwdhRWF0C4UrQtOXkBZEw0CQjb6rgAhHx+sjhP2QthPoVXTENqFYnXBiQuoTVILAsLVdkoVhXDZWR0Vzpjph7CTQj5xzZhCaBeK0gWnLqAxWTsICMu5o50dMxTWjebcUUcQGgdDaBeK0AWnLmCvwWAgEBarKDb5B0IIyWF7FYUChF0UVqZwm2EI7ULRueDUBbQQDAbCbD3hRrmeUAwhOdxJf+3cbnlvJQg7KKyuozCiENqFInNBFCBYshQKhMYr69UhFFJYX8xkgCG0C0XmglMXIFw1OA0I5aGwudeTNoXQLhSVC05dgGThbjgQmt1bEUIphVvNdb26FEK7UEQuOHkBsklqU4FQRmELQl0MoV0oHhecvADpPFGEsL2sV4tCaBeKxgUnL0A+V3syEEooFEGo1T8D7UKxuODUBXStl5gOhGIKhRDqBENoF4rDBScvoHPN0tQgbFK4JdkKX5lCaBeKwgUnL6B72eCEIBSGwi3ptoeKGEK7UAwuOHUBfSt3pwShiEI5hIotQ2gXCt8FJy+gd/X8pCAUUNgBIadwrTNLaBcK3gWnLkBhB4sJQlijsAtCJQyhXShwF5y4AMkUGccCSFQQtinc6jykcG2tF0NoFwrZBacuoL1ewo8AAg6hAYWV662eU2F6KYR2oXBdEAWo7qU2NQibFPZB2IshtAuF64KTF6C8n+HkIGxQ2A9hT8sQ2oWCdcGpC1BGcLIQFhSqQEi6Bg2hXShQF5y6AA0EpwhhnUJFCOUYQrtQkC44dQGKHTKuBJD4ICQCCM0phHahAF1w8gL0EJwmhFUK6fMrntcrbhlCu1B4Ljh1AboIThTCCoUaEIqDIbQLheaCUxegj+CkIWQUakEoCobQLhSWC05dgGZj0JEAEiWEJYV6EAowhHahkFxw6gLMEAwJQtPd1owgJE0IjSmEdqFwXBAFmCEYDoRs89+z5ea/R+f5fr+rnXmSnLsquCAWEHIK2fPrQNjEENqFwnHBqQswjYPBQMi3weenLZEF33T7qLrz/ZFgG3xDCHMKDSCsYwjtQqG44OQFGCMYCoTFgTD5cUurRcIhXCSnyjNgahfs3pYQXjKCsDqRDdqFAnHByQswRzAUCJcpcrRNuMhC4ZMXkkR0GprwaDRTCIkFhJVgCO1CYbjg1AXYIBgKhPQI3rJjZpkkm08U54JWzgddNg4LtYOwHC00gLDAENqFQnDByQuwYzAQCHkkzK827hOfkC08LtscwoJCre7R0pT2oOmzEbjg1AVYtAbdCCBOIDyYJ5vXakMUOWer7bzmeTA/tVu7yO9tDyGn0CC9Cwqjd8GJCzDvE3UkIDMXvaP7czZCsVt+oADhCWpbWxTCLTPLO2fY5qNGGeRVUrSJWrGBhbc7DAghWT1MMVy/Sw7ha36xdpHf2yoSFhVSw0hIHATDuOPA1AU4CIN2Arg5mzFz8ULrzHq/1VHCKTSHULK2Qt1idsHJC3DDYFAQvo1cKUYAh4Iwq5Ea9sywDCyDYcQuOHUBHEHwEiBOISzrmRq9o1YU5s1CGwjtgmG0Ljh1AWUUBC8B4gJCNvouhpAPCebjhG+sfegCQmIPoRWGkbrg1AVUO0XBS4C4gHC1nVJFIVw2q6MqM2YsISwoNM6A2FAYpQtOXkCtMQheAsTt3NFmxwzlc6OYLlq7yO7tAEJOoXkG1EwxjNEFJy6gOTQIXgLE7SqKTf5B0ew7rC6cOBStonAD4SVLCE0xjM4FJy+g1SUKXgLE5XrCjXI9Ydn3criT/uTcruCCOILQisJKAa6ZYBibC05eQHtYArwECPzKensIiRsIjYJhZC44eQGCkUHwEiCjgFB8nr1OBty0MYzLBScvQDQ6D14CBH6jJxcQmlPYKkBNCqNywakLEM+QAS8BMiYITShsF6AehRG54NQFyCapgZcAGQmExhSKClAHw2hccPICpBNFwUuAjAXC6w4h1KEwFhecuoCOudrgJUBGA6EhheICVO+ficMFJy+ga7kEeAmQ8UBoRqGsAFUpjMIFpy6ge8kSeAmQsUDIQ6EuhdICVAyGEbjgxAX0bmABXgJkRBAaUdhRgEoYhu6CUxew18sgfAmQMUFoUiHtKkAVCsN2QRSgsHgevATIqCA0oLC7APsxDNsFpy5AaS818BIgo4Ew22hGm8K+AuzDMGQXnLoAxe0MwUuAjBFCHQp7C7BnbUW4Ljh5AarbOIGXABkZhNqhUKEAOykM1gWnLkB9JzXwEiDjglCfQqUC7MAwUBecvACNzQzBS4AEAKENhdXnz3d70qNQsQClFIbpghMXoNgY9CdA20YJoTKFqgUoozBAF5y8AC0EAygBMj4I9ShUL0AxhuG54OQFaDIIXwJkZBCWFBpk0GNCCoNzwckL0EQwgBIgI4KwPJJCg0KdAhT1z4TmgpMXoM0gfAmQUUKoQaFeAbYpDMwFpy5AtyrqXICh+YBQddcnrxAqUahZgK1gGJQLTl2ACYIBlADxASHbhPRsvgnpYXqx/m272cVqZ54k566W93YOoW4o1C7ABoYBueDkBZgxCF8CxAOEfDtudurLE9n3G2zT7SPhDtzOIKyeU6hKoX4B1ikMxwWnLsAQwQBKgLiHsDiYIjsDJjl1lazygwsX9KJ1FoUXCFUpNCnAKoahuODkBZgiGEAJEPcQLpPTrE24oKFwkQPHjiaUnMrkEcJ+Cs0KsMQwEBecugDjMOhKgKW5hpDyxjtmVtvVc0GXjUMLvUCoSaFhARZrK4JwwYkL0Jul5kGAbQb+IiG1+gnZkpN63UFYP7zeJ4QFhvAuOHUBChtY+BUQIoRpM3DzmghCyZn13iBUotCiABW3gvJ2fzcZRC/AEsEASoB46B3dn7MRil36/aI4u74N4QlqW6lRCLecGIWwcskodJOz0PJgiAZnPAxC65AZFIRk9TDFcP0ukoXFXdo7mrzmFysQ8kEKH5GwGQq7Y6HdXzH7YAj+ZzhqAbY1UWsBbjLwNWPm4oXs7OxlNk54cZjqaKM+qkChbQHaYgjuATELcIFgACVA/E1by8cGn0xpPHt1oDZhE8L+ZqG1C1lSCO4B8QrgCEZfAsQfhGWlk+Qdov57R1sQ9lLo4A1aYQjuAdEKKKJg9CVAnEPIhuJbELKRez4+6G2csNUoJL0UOnmDFhSCe0CcAqqNwehLgDiHcLWdIkYhXNLqaM7bwTybw+Z5xgyRhUI5hW7eoDmF4B4QpYBaYzD6EiAe547Syuc+6yR9cs5YTPnc8Dp3lAgg7KHQ1Rs0xRDcA2IUUO+Qib4EiMdVFJuViwy7Q8+rKIioPtpdIXX2Bg0pBPeACAU0+kSjLwHibT3hRr6e8IlvSZJvuCv/yeFO+pNzu+W9s5ubU9h+/jaEnRS6e4Nm/TPgHhCfgOa4RPQlQEJYWe8bwi4KXb5BEwzBPSA2Ae2xwehLgEwHQjGFTt/gmj6G4B4QlwDR8Hz0JUBC2OjJOYQaodDxG9SmENwDYhIgnqUWfQmQ0UEoDIVyCp2/QU0MwT0gIgGSWWrRlwCZCIRSCj28QS0KwT0gGgHSiaLRlwCZFIQCCn28QZ1gCO4BkQjomKsdfQmQcUKoTqGfN6iOIbgHRCGgc8lS9CVAxgehJBRKKqSe3qAyheAeEIGAnlWD0ZcAmQ6EYgq9vUFFDME9IAIBPasGoy8BMiEIhRR6fINKFIJ7QPACelfPR18CZKQQykNhg0Kfb1CFQnAPCF1A/+r56EuAjBDCnlBYp9DvG+zHENwDAhegsIFF9CVAJgWhgELPb7CXQnAPCFqA0h4y0ZcAGSuEqhT6foN9/TPgHhCyALV9nKIvATJGCDtCYYtC/2+wG0NwDwhXgOpeatGXAJkahE0KB3iDnWsrwD0gUAEaO4pGXwJkchCSwSHsDIbgHhCkgD0NBuMvATJaCBUpHOgNSjEE94AgBWjt6ht9CZBRQtgdCmsUDvYGJRSCe0CIArQYjL8ECEJoZ+rpxcEQ3APCE6CH4AhKgIwXQjUKh3yDIgzBPSA0AboIjqAEyDgh7AmFFQoHfYMCCsE9ICwBOh0yXgSAZDBhCC91ZWArQGItDME9ICgBBgiOoATI6HZby6ynPkqgIGx10IB7QEACjBAcQQkQb5v/ns03/z2kF+euZhernXl5QQoIzSmUPn8PhAWFw7/BOoXgHhCMAEMER1ACxOM2+PlRMOz77AiYI/E2+BAQcgoh3mAVQ3APCESASWPQqQDIDDweCEPBW20np8ozYBbVC3ZvrxCqhEKQN1ihENwDghBggeAISoC4h3CZnGZtQnYkYe00NNnRaD4gVA2FMG+w7J8B94AgBFggOIISIO4hpOfxFh0z+aG8aUB8c4YnteYhoTAQZhRCvUGOIbgHBCDAKg6OoASIv0jIrBb8ZMdlQ0LYeaC9lYAe61xbMYQAR+ntBdghOIISIO4hPJgnm9c4hEWb8DT9Pq+GHsx5o9AzhCoUGt1WRUCvuaEwehe0RHAEJUA89I7uz9kIxS67WGV9pZu7bQhPUNtiRiHccmwUwp5fySqkcJZjCKgA3DIEoVX4MygIyephiuE6Oxn04AKDcONqDUI+SOExEirUR13EQsu/gvbBMO44YB0GbQU4SB9kJCR0xszFC+zMelo33aXhMOVv2OqoSn3UQbPQ9gVY10ljdkHb1qC1ACfpw4XwbeQKHQ5c5B2hi7RRODCE6qHQhkJ7D7DEMF4XzBEEZwBcAPEHIa101rkbtHdUDULrCqkDD7CjMFoX5GFQOf2epqnmO0II2WiEGEI+PjjIOKFafZRsWVLohAEbDGOFsABFNb12rXWolfkBQrjaThGjEC6b1dFhZ8wQtVC4ZRkLHTFgTmGUEFaDlT8IB9qjJkAIy7mjtPK5n5QdM5TPjaHmjlLTgNCYQlcMGFMYIYT1CqM3CFVTjBHCYhXFJr1YVpdUHA63ioKaSn10y7Jzxh0DhhhGB2Gz0YYQEm/rCTfy9YTX2OLCq9nF4Q5dXLhb3jsECK0odMiAWcswMgjb/SYIIQliZb0nCFUoZBlYUOiSAaPppJFCqJ8eIdS0yCC0oNAtAwYYxgShcPRAC8Ln9j5Cv9zc+xj98lSa1e++QL87/ujT/PduZp+QyUOofG+/ECpQmGdgTKEfCDUwjAhC8QCeJoQMsecohMcfpSQ+tfc0/f8T5S/e+Fg1Rb8hhNlXcAiNBypcM6BNYTwQSsbQNSH8vU+mX576vRS0j2ewPfWxavQjlaiIEKrd2zOE/RQWGRhS6J4BTQyjgVA2jUUTwv9JY+B/+f2PpVXSp4ufURDTD/Z+939QGnkoRAjV7h0OhIYU+mBAi8JYIJROJdOE8H/91/T/j6WcPVdGv+OPfpIy+In0H/2Q/wQhVLu3bwh7B+xDhJDoDBrGAWHHdE5NCJ9+6mly45MUwo8UP2JB8Qa9vkH54zESIVS79yAQdlFYycCIQm8MqGIYA4SdM6p1IbzxCfLxp+uRkFHHqqTsQxYYCUKoem9+c1MKXUJoRKE/BhQpjADC7lUNuhDe/NjNj9BmH493N3/3BYTQ6t7eIeyjsAWhJoUeGVBrGQYPYd/CIl0IyX/7/U+wvpen8t7Rj2B11O7eQUFoEgq9MqBCYegQ9q7t04bwqb1PMggr44Qf/yS9xI4Zs3v7h7CHwnoG+hT6ZUCBwrAhVFhfqw0hZSwbhfg4nzHDLo8/urf33+nlUzhEoXXvwCDUp9A3A70YBgyh2hJ3F3NHi8F6CigO1mveewAIuykMHcLelmGwEKpuM+ECwmLaWhkl+1LoC/CXAUJYN10K/TPQM3QfOoTOBHTmxKNfCmERFSe8vYXevYeAsHPAvpWBJoVDMNCJYaAQqu+2pD7tTV2T1u8jhPk33iGUUSiGUJ3CISEUYhgkhDobnqkL2NMy5WxjhPD5B7/xttS+/rt/08G9w4NQMxQOw0AHhSFCqIUBOAPgAogmhMcPnpwVdssbHre99yAQdlEoyECLwqE8QIpheC6oGYnAGQAXQLQgZAi+/Jvf+f7U3vldX5di+Ho7DIOEUIvC4TxAQmFwLqhZGYRnAFwA0YHw+dtnL/ne6gePpR/8lNW9h4Gwg0IphIoUDuoBIgrDckHtBlkADIALIBoQ3jzTJu7521/0kM29g4RQh8KBPaCNYVAuqI9gAAyACyAaEB7/uujTX7epkA4FoZxCcQbBQtimMCQXNGEQngFwASSM3dZCg1CdwsE9oNkyDMgFTRAMgAFwAcTb5r9n6ea/q+2EG9t2e7UzT5JzV8t7DwWhdMBeloEqhQAeUKcwHBc0YxCeAXABRB/C48ded9ttt73ie6W/cKXc+b4B4ZFsG/xhIBRR2AmhAoUQHlCjMBQXNKqKuhQAlh4Awht8oPAl94p/oTgQZr2skh7M2cUiOSU+ECY8CFUphPGACoZhuKAxggEwAC6A6EL43MnZS77n/e9//4NfN5P0iy6T06xNuChOIcyOS+s6Gs0/hDIK5RmoUQjkAWXLMAgXtGAQngFwAUQXwvtnt2bdocfpd8LfoOfxNjpmllnsW+Yn9LYPCQ0RQjUKoTygGLoPwAVtEAyAAXABRBPCm2du4bXQ506KQyGPhKWlTUF2Trb8uOwBIJRQ2JWBCoVwHtCzxMm/AJ6BFYIBMAAugGhDWJBX+bZmB/Nk81oNwjwC1s/Ozu4dNIQqFMJDaImh7QPYhUEHAqYHYVodvTP/7rmTLxWP0+/P2QjFLr/mbcAmhCeobWVGIdzybBRCzSQMQi9iXFhBIZgCPksNTEDw5gXC53l99Pnbb5F0j5LVwxTD9bs4lHlvaAVCPkgxZCQUh8KeDHpDIeyfYQfB0EKA/tI9xwLcZAAugOguZfrOb5zNXv76d/699MtL7qD2TaJwePSmixeSvAW42i6+kVdHTSnUen4DCHsphPYAawrtITTPwFaAmwzABRDtNuGsYcKGIe2YuZIHwCLugUMoojB2CNMM7Cg0FlBURU0zsBXgKgNwAUQ7Et7RMEkkfFsBX9kX2tE7GiyEfRQG4QE2GJoKKMJgECUQtQDifO4o64apQlgO2vPxQcE44TAQCijsz6CbwjA8wIJCQwFlTTSMEohZAHEOIZsdQyHMR+iLSmjnjJkBIaxTqAihlMJAPMC8ZWgkoNoYDKQEIhZAdBb1/iXBKvrjv9tsExZzR7PK59H5Yr52yueGZO7oQBC2Q6FCBjFAaB4MTQTUOmSCKYFoBRCdRb13t7aUOX5AMFjIV1FssquyF4aQQ+kqiqEgbFGokkEXheF4gCGF+gIanaLhlECsAohOdfT4HbPZK36yvH7sdbPZKwX9Mmw94cZ92cV+GfdSCnfSn5wrr2EgrFKolEEHhSF5gBGGmgLaQ4MhlUCcAohem/D5e2az2Yu/nvaKfiNd0vQKyTZP2ivrB4OwGQrHBKFRy1BLgGh4PqgSiFIA0e2Y+cIDxcajt7xSuv1vwBA2KFTLQE5hWB5gMHRvAqF5BrYCfGQALoAY9I5+4Z0P3nHHd/+Egw24o4FQTmFoHqCNoY4A4RSZ0EogPgEkkLMoBoSwTqEOhCIKQ/MA7bUV6gIks9RCK4H4BJCJQlhQqJpBLBBqT+pWFSCdKBpeCQQioPuc9rpNDkJiAqGMwhA9QAtDNQEd6yVCLAF4Adevd58Q3bDpQVilUD0DMYVBeoBOy1BJQNd6iTBLAFLA9YopZoEQqpm4WRicB3BTpVBBQPeSpWBLAETA9YYpZjFBCCsUamQgpDAoD6ibGoa9AvpWDQZcAgMLMASQGkKoapFBqEZhj4D+xfMhl8CAAiwIJNOEsKRQKwMBhWF4gMRUWoadAlT2rwi6BIYRYAcgNW0IH7vntpc/JFxSoX9vSAiv62fQphDeAzp/2k+hAoQ2AvpNPX3T13vMvQAVVWaZaEL43O1sT4ubZ2avMrtf7d5QEBah0ADCGoWBQ9gfDDvSq+3jNFgJaPr3EBA6AZCaHoQpfK/4B2de9BBdUXGn+U35vcEg5BRqZtCiMHQIezGUp1fcxylYCFV/36JfwQ2BxGAb/Hzb30ck2+Br3Ts2CFsV0vAh7KFQml51K7VQIVT+fYMHcAogNb2Nnu6+5d4cQtk2+Fr3hoMwp1A7gwaFEUDYjaEkvfpuhpODsEXg0HNHGX8ZhLJt8LXuDQyhSQHWKYwCwq4OGnF6jR1FJwWhMAQOD+FoImFWoIYQFhRGAqGcQlF6rV19pwOhrA46NIRpm/BVGYTSo9G07l3e3IxCAAjrFMYCoRTDVnq1PlEDAbbpudc/e/0P+TfXr//Bn9Dvjj/9//hv3cw+IY4h7GoEDg7hcydnr/yNMy/6h79x+0x6FoXGvSEhlJ7e22dxQiihsJFetIGFKwGW6fNXdfzp//2p7OtnCAWR4vfs58tf+9Jn6r9vL6CvG2ZwCCmF+e4W9iMUwBC6oDAiCMX9M2II/QiwS5+/qS996ssMvM9lsD37mWr0I5Wo6ARClX7Q4SEkxw/eRnd7er3b7S3gILSjMCYIhRjW0+szODiEn/vM8afTwHfzelEDZSCmH1z/g/9LaeSh0B5CxZEIAAhdGjCEdqHwkgMBQ8+cbC80rKY3QHBwCG+mLcJn0/rol8vod/zpP6X8SnIAACAASURBVKSffz79Rz/kP7GDUBFAeQZa5gNC/d3WYCC0r5BGBmE7GJbpjRAcHMIvUQDTKPjlTxU/YEGRfk6+RPnjMdIcQg0AxRlomxmEx++X/4xt/ns23/x3dWWeJN+QHxi62kkvzl0t7w0NoTWF0UHYxJCn1+6QMRdgmD57TZ/7PA19n69GQkYdq5KyD1lgJEYQNulT843hIXz+L7LhwZtnpJ2jfBt8dvRSvvN9tif+kXwb/Ngg5BRGCGG9nzRPb4rg0BDezND4VBHvbv7Bn7iBUACgYg4QQxQ5hLIhiuJAGHr2UnYGzCq7IIvklOxAGCgItyybhVFCWA2GNL1xFDQWYJKevaVnWS2U1kefzXtHP+WiOmoMoNYTyE13sJ6fACObwL1MTrM2ITuXcD8Pe/TDzqPRwCC07JyJE8IKhlu2x14PCiHrGM2+VMYJP/eH2UdmHTNWAGo9gdz0p63xb8XT1uh5vLxjpjivntkyP6FXdEgoMITGFMYKYUHhlu3R84NC+OU8yj1LQfvc9XzGDBuUOP709ev/h14+qzFEYUdfbiATuFvf1oxHQmqVwwlJ93HZcBC6GC20uj9UBjmGdggGMXe0GKynQVB5sN4JgNSGhvD47hmfKHNj1j6akNrBPNm8lkNIDyd84lvyc9KKM3vLIwuDgBCUQkAIOYZ2DIYAYTFtjUKoNm3NGYEEoE14Yzb7c3SuzBcePFng2LD9ORuh2CUMt52iq7QJ4QlqW9wohFtAlr0H/XR5szBe4xRC61CyDlB49EshLKKi/H02AfQpWhErzSGKB/jJaPI9ZlYPUwzX72I9pcnmLlldob2jFQh5JTWMSGgeC7vPs1e/P1AGaQhU2hbRmwCt9HpvSPbL7QgI+gpy0x2sf/4eOoX7Ftn5oMyO3nTxAj2zfj8fLUybg6fDrY4SQAohPYA1Bq0pHLBrStCPKTWF9I4eIORpa1eSU7sH8wp3IUMIRiGcB+Sdolu9+7H5EuAovWIGckjHDCGtdBYVT/ZNoL2jmRlSuGVJIZgH8E7RLbNTtu0FuErfl0FvlIwKwuPv/KbHj7/zjtK+SdQ7yobiOYRF8Nuns2T4+GBY44TczCjcsoyFQB5Qjg3S9O21Fd4FuEvflYFSPTUqCOnA4M0zs9KE44Sr7RQxCuGScrfIgx6bPhPmjJnCjCjcshyoAPGA6vB8lt6CwmAhVGwoxgXh8ft+4vHj972ztJ8QjhMWc0dp5fNgThdNZL2j+UTSwOaOVr43oZCmt6EQwgNqU2R4emMMg4RQFUBvAqhpeLTzNiFfRcEWTrBBwyRZZ63Bw/BWUdQyMKCQpbegEADC+hSZMr0hhcFBqEyfLwGZXdbxaD0IH3hF/7YWbD3hRr6e8JAuITx7lV+kPzm3W947LAgNKIwNwtaCiUp6s2AYFIS6ADoXkNtlbopZmM4d7bJoVtY3MzCD0ILCYSEU7KVWS2+CYTgQmhDoVEBulyummAVCWDVdCvP0xhQOCeGegMFGegMK4SFU6gP1KaDy/eXLBgjqVkcfmd0q7I4xswqEZhS692HNV1iF0ITC4SAUIthOr40hLISWANoLqGRw+bIhgrqrKN53z2x2W9c4oZaFCqH6e+Tp44GwN70mhYAQ2gNoKaDMoAmgpitrVkf7xgn17h0ehJoUFukNKRwIQvnG2oL0ehQCQegGQAsB1QysAKSmGQl7xwm17h0ghHoUlunNKBwGwo5NZITpdTCEgNANfRYCamYJILVANv8NB0ItCqOAsGsDC3F6DQqHhrAFIGyj1B5AaloQfsFB+KveO0gIdSispDeicAgIOzewkKRX758ZkgFhBRQQQjcEEi0In7+dNgVf2rWSUPPeYUJIritjWE1vQuEAEHZvIiNNr4rhIAx0tQCBILRtBtZMHUJ6INPLX+eiQ6a4d6AQqlPYglCTQu8Q9u2lJk+vuLbCOwMCAGsvBgBCu65QgalDmO05eny3fGML7XuHCqEyhrX04UHYv51hV3olCv0yoNAJOjSELQKt36HOKoq7sz1HZdusmdw7XAgVMayn16fQL4QKW4p2C1DA0B8DCgD6FdA2YQgcEkI+ZU1x6prSvUOGUInCRnptCn0+gNKuvn0Cein0w4AKfV4FCExWB0UILU2pMqSeXrtZ6PEB1Hb17RXQFwwdM6AY/vwJkFhHIxAhtLS+DPrcoJlel0JvD6C6ub2CgG4MHTLQ1wXjXYDUOrthEEJLU+ybU08fBIQdM2RMBHRS6IoBIwBdCpBaXz8oQmhpChl0OkQ7vR6FPh5APlHUWEAHhrZPIAp/ygC6ENCZXmUkAiG0NJUMurxCkF6LQo8QuhUgpdDmCezocyCgO73iWOCwEM7qNs5VFALrcA8ZhKoUun8AnTCoI0BGofETuADQSkBneo3heITQ0hQzkPqIKL0Oha4fQBNBLQFiDLWfwLr+aSugL31zMLDPLYeEkHzh/XXr3/Kp996xQCilUJheg0LHD6CLoJ4AYctQ6wmc0mcioD+9HoAuBBBcyqRqYo8Rp1en0OkD6COoKUA0nVS3BJsADvgKFdJrE+hAAEEIlU34h1uSXplClw9ggKC2gDaGyv3LkggYEIQGALoQQPwdCKN075ggJNcFGMrSq1Lo7AG0G4NmAtbWmhj2ZNBb/wwFQjMAXQggPiBkm/+ezTb/Pco23c533V7RnYDPXS3vHRWEIgyl6QeG0BBBAwFNCjsyUGoABgGhYQx0I4B43AafHb10MK9AeNSxDX5UEJbOJE+vRqGjBzBm0ERAHUNRBuL6Z6Dnsej3xDgWQNxDWBwIw85eKs8iJPRsplPSA2GigLDmXn3plSh08wDGCBoKqFLYzECZPhsBrjLQHIxwLyA31xAuU+xom5Cdhpb/n1nn0WhmFAK8wbpvBQGhBYPGAgoKaxloAmgjwDoDJwDaCKiYawjpebxFx0xxSii1ZR4VhYeERgNhHcOu9CoUOngA86qonYAcQ5aBTv3TmQCLDJoAWm1QESCEPBIyOzp/6hcu8FOZOo/LjgjCus91/JoChfYPYIWglYCMQmP67AWYZuAQQDMBLXMN4cE82bzGIeT9MhS/IioezHmjMFYISbtxKDKFcQrrB7Bk0EbA9TUhhsMJMMugCSB4zxDx0DvKzgU9e98u+z5JNnfJH+/QXpomhCeobZVGy2QrIqs6nuRXGIQ+NWQI+ryDzLLnblIIoUTLqgAOcT8oCMnqYYrh+l2kbAbS/pkKhHyQIuJIyKw3APSGQpv7m47PWwlohD1O4XACLDIQ10FHGQkJnTFz8UKStwCZ7SendsdVHeXpezDso9D8/lpLdx0IkPW99O4E5UqAXQbyZiC4DxF/09aulMOBWfAbJ4Q9rUNfEBYIOl5D0DYJfMXjbvXtBGUrwD6D7q5QcB8i/iAsK50k5248vaON9F210h4Kze6/V4ZBrxD2AZhlIFpb4UiAfQb9gxHgPkScQ8iG4jmEq+0qd3x8MPZxQlF6sYNS66bQDkLjDFQE9NFXycAGQ6+vUGUwAtyHiHMIU+7eyCBcJiz4nc4/fPNYZszI0st8tXucwuT+tcagBwjV4Ktm0F5bYSXAVQZqo4HgPkQ8zh3NuKNDFIcXWPswRXFDPnc0dgiJbNto1xDW+2McPoBi6BNmYE6hr1eoPBwP7kPE4yqKTXqxzBdRXKUXh12rKEYAIRFz2EWh/v0bXaIuHkBCXz+AVQGmGHp5hcoE+hKgaZ7WE25k6wnJYXqxnkbD7GIn/cm53fLeo4OQWsuTOyjUvX9rVMLqAeT0KRJYE2BGofNXqNAM9CvAwEJZWT8eCKnVvLmjWah5//bIoNEDuIBPKMCAQqevsLcr1LcAQ0MIfaVvUijyb637i0bnFTPoxs6IPrEAbQzdvUITAp0KMLdQNnoaH4Sk9H0OYcvV1e8vmSCjKMADfRIBuhS6eYWGALoTYGcIoef0LQqrpnp/6SS1vp6hPvjcl6Bmy9BaQJM/XScC9yGCEA6UXkahYjCSzhPd0sOudTcfJahFoaUAOwAdCEAIwQtQD8IuCv2atwIQZqBDoZUAawJtBTjJACEcKj3vIg2FPu0H0MpAHUNzAQ4AtBPgKgOEcLD0woGK4akzfwCtDJRbhoYC3ABoIcBhBgjhcOlFFAongHulzuIBtDJQHbo3EVCLgUO+Qj8ZIIQDphdQ2Je+d+FuwC6ohqGugFZPTMAloGwI4XDp2xR2p1dYOx+wC6qtrdAQIB6MCLgElC0oCKMb49FMrwWh0vYVQbugCoXKAmSDEUGXgKIFA6FJKAQvQN30TQrl6RW3kAncBfsxVBQgH4wIvASUDCEcNH2DQll65V2cgnfBPgpVBHQORgRfAgqGEA6aXgtCHwIcp1fJoJPC3vR9gxExlECfIYTDpq9TKE6vsZthHC7YgWF3eoUB+ThKoNsQwoHT1ygUptfZUDQSF5RTKE8v64kxEiA3cB8iCOHg6WvjFKL0Wnv6xuKC0pahOL1wMMJKgLf044Nw6OPCId5gN4Sa22rH44ISCtvpNQDUEuAp/bggNAiF4AVolL5CYSu97tb2EbmgmMJ6+iaAA+wRA+5DBCGESF9S2Eivf7xEVC4owrCaXhtAXQE+0iOEtgpCglCjT9RWgLv0ehkIWoZlegMAtQV4SI8Q2ioAeoMFhWV66QYWXgQ4S6+ZQXvoPk9vBqC+APfpQ4XQaLe1KUFYUNiCcCgBrtJrZ9DEkKZXILDVWFQxLw/gPgNvm/+eva/8oDgLbbUzT5JzV8t7TxvCS5X0hgzGCyHHUAkbs4W7E953lG+Dz49eomdQZBAedW6DbzJGAV6AxunrEJoiGCGE1UndqpHLePG8SjpwHyIeD4Qpzl5aJjmEi+RUx4EwxCAUghegefqMQpbeHMEoIaxgqFh3NN7AYqoQ0mPqaZtwwUPhwTyHsOdoNDItCDMKt2yPno8SQnK5QWHfr5vcQzUhuA8R9xDS83irHTNpZfRi1iZc5if0Sg4JJVOE8JJVGLQT4CS9dgZF5OMUqqQxEaaaENyHiL9IyG2RnM47ZnqOyyYTgzCn0ArB6CCsNQFVtqDJUhkpU0wI7kPEPYT0XNBrJYT7aVU0g3C1nVdDi87SiUNIOIRgAhyk18qg2Q2jSiF3ig9f/jFCvvKet2YXb2WfXL78A79KL7/ynn/Ff/1P//mvNhJ2GbgPEQ+9o/tzNkKxyy5YA1AM4QlqWzWjr2ZrOraXUQgtYyCrAZh/lrcMe5NmnvWV9/yLH/xgCh79j0H3lff80H+mIFL8PvzW0gU/Sz+mBu5Nisy4HydcPUwxXL+Lfs+6Z1oQ8kEKUSTUCoXgf8Vs0qcxsPMobe8CXKRXzEDaDaoUDPMkn/3Bf/83U97+6G/RQPdHf/uD5AMZbB9Ov5TRj1Si4mQjIaEzZi5eYGfWL1m/qHJ1VLs+Cl6AFun3OIRWFMYAYedYYN9GUCyD7MsHfuh3WFX0A2mllEa+P/25ogbKQEw/uPwDv0IR5aFw2hC+jVxhjUHGHULYtrxT1JrC0CHsHY7fUsAwS/anP/djWVWUIkaDXRYSmX3lPT9Gf4GCSZuI/CdTh5BWOpdJYWkNtL93dDIQFuMSW7YUhgyh0oSYLYVgmKX8bArgH9H6KK160too/ZcbC4qfZYRSCHmMnCiErCdGDCEfH5SPE04FwnJscEt8ToxvAe7SyzJQArBI34NhlvoDb+Vdo2l9lPbDVCIho45VSdmHLDCSyUK42k4RoxAuy9lpef2zf8bMNCCsDs9vSU5r8irAZXpRBk0AO19pnr4TQ5ZB2uCjltVHf4d2vfB4l0ZGhLBmxdzRvPJJCghTPje6545OAsLaDBma3orC8CDUALCavr3SsJIl/S8bmcjro7/CaqIfzntHf/CDWB2tG19FsVl8wntiDntWUUwBwsYsNZZ+TBBqAVhPL6eQZpSP0ef10b+TXxTjhB/Ih/GxYyYztp5wQ7Se8HAn/cm53fLeIgh1KAQvQM30rYmiWXoLCoOCUBfAZnoZhjQzFgJT+zCF7LOX88GJD1zOZ8ywQYmvvOfy5X9J+fswDlGYrqwn2qEQvAD10rcna+fpzSkMB0ITAlsCxBQq5FcM1tMgiIP1BCGUmGC9xEgg1GsGdgkQUqiSI5+2RiEsp63pC9C3QCFUvveEIBQvG+TpjSmEh1CnK1RFgABDlTx59EshxAncWveeDISyvdSK9KYUAkNoSaBQgCGFQnVGAjQNIbS0YXx4T8ZgA0IDCgEhtAdQIqDdP9O8laoZCrB+Al1DCH2nlyNYTR8ZhE4AlApQXu4ry8BWwKAZhAjhgLsvDwphT3ozCkFc0BWAcgEqays6M7AVMGQGoUGoGQrBC7A3fc/G2tX0RhQCuGCdQF8ClDFECC3vPXoI+7ZSiw7CVgj0JkCVQoTQ8t5jh7B3K7VaehMKh3RBYSXUowA1DBFCy3uPHML+3Qzr6Q0oHMwFZc1ArwJUMEQILe89bggVdhQVQKhH4SAu2NUV6ldA19qKQQQMkQFC6C290q6+jfT6FHp3wb6hN98CeilECC3vLYZQnULwApSmV9xYu5lem0KvLtgHoHcBzHowRAgt7y24+TggVN3cvpVel0JvLtgEUPZShmCgk0KE0PLeI4VQFUFRek0KPbmgGoAeBdSti0KE0PLe44RQGUFhej0KvTyAKoDeBLRNjiFCaHnvMUKoHgYl9weGUANAPwLEJqUQIbS89+gg7Jsho3R/HQodP4Amge4FyE3WP4MQWt57ZBD2TBRVvr8GhQ4fQLkZ6EtAn4kpRAgt7y2BcDAP8AOh9f01moWOHkCxK9SfACUTBkOE0PLeoptHC6F2GJTff1gIzQl0JEDdBBgihJb3HhOEBgjK769Moe0DWAHoQoBm+jaFCKHYzHdbI9FCaIJgx/1VKbR6AFsArQWYpG9iiBCKjG3+ezbf/PfJC0my/m272cVqZ54k566W9x4NhGYI9kGoQKHxA7gA0EqAefo6hgihwPg2+Ozopfxcpg228/1R7zb41GKE0JTBjvsrUmjyAM0qqNUGFRAM1NZWIIRtKw6EoWcvHczpqdmHF7ITCRfJqZ4DYajFB6FRa7D3/r4gdAigmQAX6SsUIoRtW6bA0TYhO61+kcXD7FA0haPRqOm4BngBbhn1iardX4lC3QdoEhhACZpZgSFC2DZ6Hm+zY+boPMVvmZ/Q23FIKLOYINQfnte4vwqFWg8gCIHgJWiePqcQIWwbj4RVy45lUjgum1mEEPq5v1sIxXVQ8BK0SJ9RiBC27WCebF6rQ/jEnOK32s6rocVJafFDaMtgz/0VKFR8AGkzELoE7dIrbsjmT4CTDDz0ju7P2QjFLr9eJMk6Ha9oQniC2pbAmKOIfhCa5Qh6vAOj0DaTRk+MC13BWB4MgzUoCMnqYYoh7RZlVz/8rfNk/dtrEPJBCnEk1AiFoH/FbKOgwv37xyl6MugdjACPA5bpVfZj8yogzEhI6IyZixcqZ9aTJ2l9VLk6GgmELhjsvb8NhEqjgeAuaC3AlkLwEiD+pq1dKYcDaV/Mqd1xQZgj6N0F+yiUZaBEoIqAPgOHcMsyGIKXAPEHYVnpJDl3qr2jGiOFQAVYjkv4d8EeCkUZqAKoJqDH4CG0rJOClwBxDiEbiucQrrZz7hiEfHywb5xQIxSCFGB1bDA0CJv89RYjuAs6EWBDIXgJEOcQpty9kUG4TFjwy4Ie+6o4Y4aEDWF9eH4AF+ymsJaBJoCKAvxm4EiAOYbgJUA8zh2lQZAOGu6S1RU2kTTlc0Nh7igJGcK9OoODuGAnhZUM9AlUFOA1A2cCTDEELwHicRXFJr3Yz75fZ7XSQ6VVFESjUQgGoSsByhDKKOQZmACoKsBrBu4ErJlhCF4CxNt6wo18PeFherHOlxAe7qQ/Obdb3lt280AhbE8UHcQFuyhkGRgCqCzAZwYuBRhRCF4CJMCV9dTChFAwSW0YF+ygcMs4BuoI8JiBWwEGGIKXAEEI1U00Oj+QC8ooNOiJMRPgLwPXArQpBC8BEuBGT9RUXWrAAhRPkBnKBQUU6g5G2AnwloFzAbrBELwESKAQqobC4QpQMkltMBesU+gGQC0BvjLwIEAPQ/ASIAihkkmXLA3ngiWE7gjUEuApAx8CtCgELwGCEPZb1+L5AV2QUdgCMEQGAhCggSF4CZCQIVSgcIAC7N7AYkgXbFI4uAAvGfgSoEwheAmQUCFUDIXDQehJgHL6tDguVSgcXoCvDLwJUKUQvAQIQthjPRtYDOKCPPRxCAcX4DMDjwLUMAQvAYIQdlrvHjLeXbDWAhSMFgbMALwAJQrBS4AEDWE/hX4LUGEbJ78u2OqGaVMYMgPwAlT6Z8BLgAQLoVoo9FmASjuK+nNB4UBEe8w+aAYCENCPIXgJEIRQZmq7GXpyQelIYIvCwBmAF9C7tgK8BAhCKDbVDUU9uGD3UDxCqJ1BD4XgJUDChhBqcwZVBF27YLMKKnr+BoXhMxCAgE4MwUuAhAuhUij0UoBKjUFHAqrp+wFkVqcwBgYCENBBIXgJkIAhVKHQQwHqIOjSBdUIJAihWQbyYAheAgQhbJoOgs5cUBVAZjUKI2EgAAEyDMFLgIQMoQKFzgtQLw66cUEdAJlVKYyGAXgBEgrBS4AghDXTRNBegHIltGrVcYp4GAhAgBBD8BIgQUPYT6HjAtRF0E6AQleoxBBC0wwEFIKXAEEIS9NH0EKAOYHUSgrjYgBeQJtC8BIgYUPYS6HLAjRh0EyAHYDMCgojYyAAAU0MwUuABLrbGrfhINRuDZoKsAeQGkJonkGDQvASIN42/z17X3lRbP672pknCb8gChD2UeiqAA0R1BXQBtD4ATiF8TEAL6DePwNeAsTjNvhvrFxkR8AcqW6DX9owEBozqCFAXAc1f4CcwggZCEBAlULwEiAeD4Sh4O2zU7MPtzPwFskptQNhKtZNoZsCNEZQVYC8EWgJ4aU4GYAXUKEQvASIewiXyWnWJlykoZCfT5iGwDfrHI1WMe8Q6g7Pawvo7IaxeICMwjgZCEBAgSF4CRD3ENLzeHnHzNH5vOpJiWR4Uus/JLRqnRRaP3/3Xmr91iOgtx/U5gE6T2tSNXAXBBPAW4bgJUD8RcKaMQiVj8uuWWcfouXz79ky2ClApR/U6gFcUAjugnACepf7+hZQmmsI6bmg1xoQshroajuvhrKzs7N7q9y8i0Kr57dHUC5AdSDC7gU6oHDCELrCMEAIyf6cjVDsVj5iFdEmhCeobfUb82KF39M2jqDrfJt1UNf5VyxvF6KZ2Vphvu6gyIz7ccLVwxRD2i2a235+WnYBIR+kUIqEXaHQ/I+QgyjYEtCkr7NPSZDewKxD4aQjYRkL16AEZOZnxszFC0neAqShkZ2WbVod7aLQ+PmLKGiaQVOAAMBBDtOwpXDiELrAMFgI30au8OHAZT5Ubwmh0KVNn7+Igm5cyAzAMr2NAEsKoRkIQIAthQFDyCudVxI+LGjWO0rNNYRlRdTehcwBdHF/hNCJACsKw4OQdYSWEK4WyQafpcbHB/XGCZnJfNvs+SuNQbsCtKAvNwcuaEdhEAwEIMACw/AgXG2niFEIl6w6uijnqJnNmMlN4uMmz1/rkDEvQHsA7e5fZmBFYSAMwAswpzA8CMu5o7TyuawwSPnc0J47mpvE0fWfv9EnaliAbgg0v38tA6vRwlAYgBdg3DIMEMJiFcVmsWyCGm0GHuqvoihM7Ozaz98clzAoQGcAGt6/nQFC6Ca9IYUhQpitJ9yg6wn3kxqE5HAn/e7cbnlvjZsLPV7z+dtDg5oZtAAMwwUtKAyIAXgBZhQGCaHDlfVVE1Go9/yC0XnVDGR9oIG4oDmFITEQgAATDKcEoYhCnecXzpBRyUAAYKEiEBdECF2lN2gZBgqh8r31bt6mUP35JZPUejPoAFBPgNhcuaAxhYExAC9Af+h+WhCSFgXKzy+bKNqZQQ+AWgIk5swFTSkMjYEABOhiODEISZMF1eeXztWWZqDYBxqMC5qOU4THALiAcm3FMAJIZBCSBhRKz9+1XqKdgUL460yvZ+5cECF0l16PwslBSOpoKDx/95qlSgai/pduAtUEeE1fycCMwhAZCECADobTg7AGS//z962e32rlqQ5gJb2xuXRBIwrDZCAAAeoUThHCOoad1r+BxZYFgHl6K3MOoS6FoTIQggBFCqcJoTqGnQha0ZdbUC5oQmHADAQgQAnDqUKo0ntJ0RMj6IK+3MJyQYTQdXoVCqcLIZGwVPw0oy9DUEKdJYDUAnNBfQrDZgBegELLcNIQqsClYjYKQnPBnMJLuuZMwODpvQvopXDiEBLh7hI69EG7kBcI9aECXJofPIS9wRAhzM009EG7kHMXNAxsCGGXdWOIEDZMt8IJ7ULuXRAh9JC+k0KEEDgD6PSCDBBCH+k7MEQIgTOATi/KACH0kl6KIUIInAF0emEGCKGX9LKJbAghcAbQ6cUZMKS++CN/7YPpl6/+9Pf/9p/9UtZf83b6+Z/90rv47331H727msKdgAHTDylATCFCCJwBdPpOCL/v3ewLhfDt2ScUvw+9pfzFZ77/tysp3AkYML3iOJ+FCTJz+wTjgdDsgCVoF/IK4c9S9D70swWE5LfeUo1+pBIVxwyhZf4N5NoUIoS5mZ5yBu1CXiH8pz/z2+TP/vUv1yH8EA1+X/3pS9/3b3/03WUoHC+Ea7b5N3NoURgohH52WxNY+fyGFEK7kFcI/9m/+SD54t/4jwWEz1x6F2HffvWn35L+o7XVL/7ou8sU7gQMmH5wCFsYBgkh2/z37H3F9dF5fgrTameeJOeulvdGCC3Td0L4rg+9izzz9mfKjpl3Uf7S/56hXTbPUAjZJUEI9XKoUxgihHwbfH70Elnwo9COLLbBF1utTWiZga0AkPTdED7zFvJb73omj4Rf/BEaDhl1rErKgiCvqCKEWjnU+mcChLA4ECY/ezbjagAADWVJREFUe2m1SDiEi+SU6YEwEsPe0U4Iv/oz/+kff5BDyGqjCKG+CXOoUBgghMsUOdomXGSh8MkL/CAKq6PRJIYQdkJI/t0vv4UUEJLfSmuhE62Ofgdj5mu1Mn567aFKDq18CwwDhJCex1t2zCyTZPOJHMJl8VX7kFCZIYTdEH7o0tsrEH7xR96Skvh2Gv+m1jHzHa9m/3/N4xoZd0NYYhgghDwS5lcb9xXHY5sfly01hLAbQspYCSFnklJ46dI/ofx9aCJDFBmE5LV3amTcByGnMEAID+bJ5rXaEEUO3Wo7r4YezHmj0A7Cvb09hFAOocSKwXoK6AQG69fY/zmEj9IKKa2aPkReeNlfedna2qtfSP9LyaRf1l6df0hJfe3a2l/ug9DiYNGGOe8d3Z+zEYrd8gMxhCeobRkbG5MwTz5q60SKT1vLo2R2cQlasjdbY8+XQ/h0Wh/9jhTER7/m8Rdeln7/6Br77yEWItOv+Yfp9asphzmEndnn0VBiisy4HydcPUwxXL+LX7ch5IMUVpHQdJJMzaD/jg8fCYvol0JYRMURb2+xxv7nEK49lFUyX3vnCy9jAZD9d+8LtK1Iv+bX7Jce7Y+ExOQUJ4H5mTFz8UKStwC9VUcRQnkGmlCNeaOnNfZ/GQkfzZhJ66H3Mt7y/56mH97Lrx+lPTgvvEwFQid1Ul/T1q4Uw4H+2oTYMSPLYKi91sItAW5r7P8cwh//WvJo3kNah/C1a/dmkdAAwi17DH1BWFY6sXfUX/r+DHowi74EdXtHn05xo1aDkLYV6U+Ka1oT7e0drQiwpNAxhGwoXgwhHx/EcUJ36RUy6KYw+hLUHiek/1V4y6GjgbDy4Wu/ttIxoyLAjkLHEK62U8QohMtmdRRnzHhIr5JBJ4XRl6DOjJlXF9/f26iO/jj9jPbW8A/VhiiqAmww9DZ3tNkxQ/ncwLmjbtMrZYAQWllfDlyABYXeVlFs8g+KNuChz1UUMBlAp1fLoIPC6EswHAgt+mc8rSfcKNcTlh0xhzvpT87tlvfWurlgRCJ6FxroAeQURl+CvRCu2d6gL4OKAFMKY1lZLxwWjN6FhoRQSGH0JdibgSWF/cmrAgyDYSwQCimM3oWGeoAJQ1jMaTE0TQFGGEaz0RNCaJOBjMLoSzA4ASYURgOhaAOL6N/gcA8goTD6EgxQgD6G8UAosOjf4MAQtimMvgSDFKCLIUIYc3qNDMQURl+CYQpQblBmhhDGnF4nA4RwSAEI4WAZQKfXykBEYfQlGK4AjfpoyBD2LhiM/g0O+wACCqMvwZAFrKlmES6ECqt2o3+DCCEKICFDqEAheAFCp9fMoE1h9CUYvwCCEMadXjeDFoXRl2D8AkjQEPafLwFegNDpjSCsUhh9CcYvgIQNYa+BFyB0eu0MEMLgBBCEMO70+hk0KIy+BOMXQBDCuNMbZFCnMPoSjF8AQQjjTo8Qxi+AhAah5n6+4AUInd4kgxqF0Zdg/AJIWBBqb6oNXoDQ6Y0yqFIYfQnGL4CEBaE2heAFCJ3eHMJLgAJcpo9fAEEI405vlkGFwuhLMH4BJDAI+4fn6wZegNDpDTMoKYy+BOMXQEKDUNPACxA6vWkGBYXRl2D8AsgAEHZsvYYQgj0ApzD6EoxfAPEOIdsJ+Gy+E/BqZ54k566W90YILdObZ5BTGH0Jxi+A+IaQ74nPzmE6wm3wXae3yAAjYSACiGcIi9Nh2EFMi+QUHgjjNr1NBtgmDEMA8QzhMjnN2oQLGgqFR6PZHXgNXoDQ6VFA/AKIZwjp4bxFx8yycVgohdDy2HnwAoROjwLiF0AGioTMRMdl685Taxh4AUKnRwHxCyCeITyYJ5vXcghX23k19GDOG4UzNLRRmyInfntH9+dshGKXtCE8Qc3yGW3TW2cAnR4FhC1AERPP44SrhymG63fVICwGKU5Y5m6bHlxA9A+AAuwzGGTGzMUL9AB7QXU0/gKETo8C4hdABpq2diU5tYsQekiPAuIXQAaCkNVA272jaGhoxC+EbFy+gJCPD5bjhGhoaMQvhKvtlDcK4ZJOVWvPmEFDQyNDzR2lNdEUyY363FE0NDQy1CqKTXpx2FxFgYaGRoZZT7iRryc83Ekvzu1mF83FhQZ2dN6mi4dKW7cQ8OSFNP237VooqPUUa1u+Msz8j9rqSvoGvuEu09TbCTdTBYfUOWxcgGZg/ApK7zF0xZr7Wfki1Mr61uJCA1vY9LPmQdq4gbrM0m/YPMDKpm5+MLdE4HyllqJv9hDmD2DeRfCE1SsovMfUFWvuZ+WLUBC2Fhdq22qRWDz4PpvGkwow9iCW/oLVeEsKsvnzWw71ZE301c9bQMAsLQizDOhfICsXSCFOM1hdMcqg4j1mrlhzPztfhNroyb6rlNYGzR889QA2apn+FXyzUQaLbKClMgdP32goMIdwYTfUs5//+Vlas2wow9oFFnnhLQxeYcV7zHTU3M/OF8EgbC8u1M4g2XzC/MGPzufwWLpykY+Bpf570bxNWMxAMr652V+fhi2N/4zkkdxYSJHQoEpQ9R4jV6y5n6UvgkFoPX1muXGfk7k3lhDa9KykzQiL5EfnT/1C+gf47FXT5E56qY1rEvaRUDQPUtWq3mPkijX3s/ZFGAhtCrA0BxBaTh14Ym4eT/bTGGLx+LxfxlAAvfMT31L2XBuaRWW2aBMa5mDrQ0UkNs2m5n4IoblZtYjS1vi6sQ8z/C0efz+tA+2SP94x7FhJ77xT2QnP0Kz+hq2yDur0KcxsUYQyhNDERIsL9c0ewn2bvsHVD3/rPFn/dsPU+eZXxhAuCxc0omg/c/8UBJuqwL7N9KeDC9kIw1XT9PP8Ccx6uNsQamYzIgghI+H+fN2yd+JJ0/po1qFh9fiZGXKwz0OgzQCXVe9OwZDtUK1h7xZGwiAgXNqOkRFjBvLRNQcQGtYliuE9GwlW9ZiF/V+BJ1nPFLYJDc3J4kJLCO1qYrkZesCymG5iO5fWUEDBjw1INi/Azd9hCxVWvaOtBDFC6GRxodWDrxY2U86KihgUhDajZFn6nAGbZp3N+I47CI1bxfXxQW1XjB5CJ4sLrR7csE+tTH669tXMLBxwYTnWvbDr2MnubfP2rKujSz5pyUwF9x5jV4weQieLC20e3HymR2b23QpZLjbjhKmAwwumz5GmP3fV7gHsBvz3bbtns+m/T84N/4pw7zF2xeghdLK40OLB+Tog8zl/+/kqDKvuVZuqWF6jfc1Vw/T7c9sHsKxI8iq5cSTOF8IYiii8x9QV44ewvrjQzCwefD+xhTBbzGa3INLOjZkA46Fu+gbm5tPeqFmNEqZ2jR1eaSGATvkxXhBZeo+hK44AQjQ0tMwQQjQ0YEMI0dCADSFEQwM2hBANDdgQQjQ0YEMI0dCADSFEQwM2hDBKe+x1J2ezF7/yNzWSHD/4yvT/R2av4t8K7f6XPl67fu7knYYS0ZQNIYzQbt7Oz2N+lXqiG7NbSQ5h9q34l5rM3f+ihwxVoqkaQhif3Twzu+UNacB6/p7ZTBrSWlYhTwrhzTOtHwg+QnNsCGF8dv+M1xlvnGxFLqmpQPjILfcqfYbm1BDC6Oy5k2UN8RHG4/1ZtfSRjK3HXpfWU1/8esrp/bM73/t1s9krfooc301rr7fS6mj+7Y0c5UdKIm+eyen+tZOzl9ybo/rcSQyFng0hjM4eqbQEb56hcaoG4QN5c5F+f//sNvb9ix5qQ3jzDGM5vbqzmfP9LNEdGYTHd2Mo9GwIYWxWpSbnrwrhjdkt35t+/95ZRufs1sfJe1mltdUxcz/LJ2cxyznD7cZs9gby/N2zPEQ+otP9g2ZgCGFslgU/bo80Icy/z1DNW4/3l+RVIKz+n+ec8ZhlcfNM/hN5XyqaG0MIY7NK6CJ18IrW3Rfe9123zzIIby1+0IIwy+j+Mq7mrUROOc+u2gZF82EIYWzWEwnJ83wQ8c5mPbU5Tkj5qyJd9MRkH/EIWKcezb0hhLFZT5vwuZOz2S0v/+afvLsfQvqlWtd8RAYh9sz4NYQwOuvsHU0RvZXWKY8VIKQjEpXaKIeQRz6EcChDCKMzHqkeeOVvtscJOTE3z/RDSO6/5a/eXalqFmzW24RYHfVtCGF8lvV50slrd2QzZjJcaBAsCLoxa49dtCC8Mfv66kj8cyezsfosFcsu+xgh9GsIYXx28/Zs7uh7T+YzuCsDe1l19PgdMwGEFLEcwoy2lOPqGCAPeWmz8lXk+IFZgSoOUfg1hDBCO76Hr6LIRuazOTAv+vsZa8xe+o7m2AXtsXnp4wzC7FuWrtrcK+bGPMKyuA0H6wcyhDBK+417WCfo99yT05R+fclPZSHrsdtnsxe/IYt2tbGLXzvJIcy+JXzqaWE3OG6P0Vh7A6etDWQIYdz2/OtswlQjyBUTuJnhBO6hDCGcsLWC3CPVIUg+pI+B0LchhBO29za7XGqhkE9uw0Do2xDCydr9s1kryFW3t8jXWuD4hHdDCCdr75jd8obWh5WNnm5kfaq40ZN3QwjR0IANIURDAzaEEA0N2BBCNDRgQwjR0IANIURDAzaEEA0N2BBCNDRgQwjR0IDt/wMkZk+oHpKInwAAAABJRU5ErkJggg==</file>
</questiontext>
<generalfeedback format="html">
<text><![CDATA[<p>
<ol type = "a">
<li> False. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $80.00 </li>
<li> True. The short run equilbrium quantity under monopoly is equal to 4 </li>
<li> False. The equilibrium price, $80.00 is greater than the average cost at monopoly quantity, $46.25 </li>
<li> True. The consumer surplus under monopoly is equal to 80 </li>
<li> False. The deadweight loss in the market due to monopoly is equal to $40.00 </li>
</ol>
</p>]]></text>
</generalfeedback>
<penalty>0</penalty>
<defaultgrade>1</defaultgrade>
<shuffleanswers>false</shuffleanswers>
<single>false</single>
<answernumbering>abc</answernumbering>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
If the firm can operate as a monopolist, the market price will be equal to $60.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The inverse demand curve evaluated at the monopoly quantity gives the monopoly price of $80.00
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
The short run equilibrium quantity in the market under monopoly is equal to 4
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The short run equilbrium quantity under monopoly is equal to 4
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
In the long run, the monopolist would want to exit the market.
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The equilibrium price, $80.00 is greater than the average cost at monopoly quantity, $46.25
</p>]]></text>
</feedback>
</answer>
<answer fraction="50" format="html">
<text><![CDATA[<p>
Under monopoly the consumer surplus is equal to, $80.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
True. The consumer surplus under monopoly is equal to 80
</p>]]></text>
</feedback>
</answer>
<answer fraction="-33.33333" format="html">
<text><![CDATA[<p>
There is a deadweight loss in the market under monopoly equal to $80.00
</p>]]></text>
<feedback format="html">
<text><![CDATA[<p>
False. The deadweight loss in the market due to monopoly is equal to $40.00
</p>]]></text>
</feedback>
</answer>
</question>
</quiz>