-
Notifications
You must be signed in to change notification settings - Fork 94
/
main_marl_train.py
425 lines (328 loc) · 18.6 KB
/
main_marl_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
from __future__ import division, print_function
import random
import scipy
import scipy.io
import numpy as np
import tensorflow as tf
import Environment_marl
import os
from replay_memory import ReplayMemory
import sys
my_config = tf.ConfigProto()
my_config.gpu_options.allow_growth=True
class Agent(object):
def __init__(self, memory_entry_size):
self.discount = 1
self.double_q = True
self.memory_entry_size = memory_entry_size
self.memory = ReplayMemory(self.memory_entry_size)
# ################## SETTINGS ######################
up_lanes = [i/2.0 for i in [3.5/2,3.5/2 + 3.5,250+3.5/2, 250+3.5+3.5/2, 500+3.5/2, 500+3.5+3.5/2]]
down_lanes = [i/2.0 for i in [250-3.5-3.5/2,250-3.5/2,500-3.5-3.5/2,500-3.5/2,750-3.5-3.5/2,750-3.5/2]]
left_lanes = [i/2.0 for i in [3.5/2,3.5/2 + 3.5,433+3.5/2, 433+3.5+3.5/2, 866+3.5/2, 866+3.5+3.5/2]]
right_lanes = [i/2.0 for i in [433-3.5-3.5/2,433-3.5/2,866-3.5-3.5/2,866-3.5/2,1299-3.5-3.5/2,1299-3.5/2]]
width = 750/2
height = 1298/2
IS_TRAIN = 1
IS_TEST = 1-IS_TRAIN
label = 'marl_model'
n_veh = 4
n_neighbor = 1
n_RB = n_veh
env = Environment_marl.Environ(down_lanes, up_lanes, left_lanes, right_lanes, width, height, n_veh, n_neighbor)
env.new_random_game() # initialize parameters in env
n_episode = 3000
n_step_per_episode = int(env.time_slow/env.time_fast)
epsi_final = 0.02
epsi_anneal_length = int(0.8*n_episode)
mini_batch_step = n_step_per_episode
target_update_step = n_step_per_episode*4
n_episode_test = 100 # test episodes
######################################################
def get_state(env, idx=(0,0), ind_episode=1., epsi=0.02):
""" Get state from the environment """
# V2I_channel = (env.V2I_channels_with_fastfading[idx[0], :] - 80) / 60
V2I_fast = (env.V2I_channels_with_fastfading[idx[0], :] - env.V2I_channels_abs[idx[0]] + 10)/35
# V2V_channel = (env.V2V_channels_with_fastfading[:, env.vehicles[idx[0]].destinations[idx[1]], :] - 80) / 60
V2V_fast = (env.V2V_channels_with_fastfading[:, env.vehicles[idx[0]].destinations[idx[1]], :] - env.V2V_channels_abs[:, env.vehicles[idx[0]].destinations[idx[1]]] + 10)/35
V2V_interference = (-env.V2V_Interference_all[idx[0], idx[1], :] - 60) / 60
V2I_abs = (env.V2I_channels_abs[idx[0]] - 80) / 60.0
V2V_abs = (env.V2V_channels_abs[:, env.vehicles[idx[0]].destinations[idx[1]]] - 80)/60.0
load_remaining = np.asarray([env.demand[idx[0], idx[1]] / env.demand_size])
time_remaining = np.asarray([env.individual_time_limit[idx[0], idx[1]] / env.time_slow])
# return np.concatenate((np.reshape(V2V_channel, -1), V2V_interference, V2I_abs, V2V_abs, time_remaining, load_remaining, np.asarray([ind_episode, epsi])))
return np.concatenate((V2I_fast, np.reshape(V2V_fast, -1), V2V_interference, np.asarray([V2I_abs]), V2V_abs, time_remaining, load_remaining, np.asarray([ind_episode, epsi])))
# -----------------------------------------------------------
n_hidden_1 = 500
n_hidden_2 = 250
n_hidden_3 = 120
n_input = len(get_state(env=env))
n_output = n_RB * len(env.V2V_power_dB_List)
g = tf.Graph()
with g.as_default():
# ============== Training network ========================
x = tf.placeholder(tf.float32, [None, n_input])
w_1 = tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1))
w_2 = tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2], stddev=0.1))
w_3 = tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3], stddev=0.1))
w_4 = tf.Variable(tf.truncated_normal([n_hidden_3, n_output], stddev=0.1))
b_1 = tf.Variable(tf.truncated_normal([n_hidden_1], stddev=0.1))
b_2 = tf.Variable(tf.truncated_normal([n_hidden_2], stddev=0.1))
b_3 = tf.Variable(tf.truncated_normal([n_hidden_3], stddev=0.1))
b_4 = tf.Variable(tf.truncated_normal([n_output], stddev=0.1))
layer_1 = tf.nn.relu(tf.add(tf.matmul(x, w_1), b_1))
layer_1_b = tf.layers.batch_normalization(layer_1)
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1_b, w_2), b_2))
layer_2_b = tf.layers.batch_normalization(layer_2)
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2_b, w_3), b_3))
layer_3_b = tf.layers.batch_normalization(layer_3)
y = tf.nn.relu(tf.add(tf.matmul(layer_3, w_4), b_4))
g_q_action = tf.argmax(y, axis=1)
# compute loss
g_target_q_t = tf.placeholder(tf.float32, None, name="target_value")
g_action = tf.placeholder(tf.int32, None, name='g_action')
action_one_hot = tf.one_hot(g_action, n_output, 1.0, 0.0, name='action_one_hot')
q_acted = tf.reduce_sum(y * action_one_hot, reduction_indices=1, name='q_acted')
g_loss = tf.reduce_mean(tf.square(g_target_q_t - q_acted), name='g_loss')
optim = tf.train.RMSPropOptimizer(learning_rate=0.001, momentum=0.95, epsilon=0.01).minimize(g_loss)
# ==================== Prediction network ========================
x_p = tf.placeholder(tf.float32, [None, n_input])
w_1_p = tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1))
w_2_p = tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2], stddev=0.1))
w_3_p = tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3], stddev=0.1))
w_4_p = tf.Variable(tf.truncated_normal([n_hidden_3, n_output], stddev=0.1))
b_1_p = tf.Variable(tf.truncated_normal([n_hidden_1], stddev=0.1))
b_2_p = tf.Variable(tf.truncated_normal([n_hidden_2], stddev=0.1))
b_3_p = tf.Variable(tf.truncated_normal([n_hidden_3], stddev=0.1))
b_4_p = tf.Variable(tf.truncated_normal([n_output], stddev=0.1))
layer_1_p = tf.nn.relu(tf.add(tf.matmul(x_p, w_1_p), b_1_p))
layer_1_p_b = tf.layers.batch_normalization(layer_1_p)
layer_2_p = tf.nn.relu(tf.add(tf.matmul(layer_1_p_b, w_2_p), b_2_p))
layer_2_p_b = tf.layers.batch_normalization(layer_2_p)
layer_3_p = tf.nn.relu(tf.add(tf.matmul(layer_2_p_b, w_3_p), b_3_p))
layer_3_p_b = tf.layers.batch_normalization(layer_3_p)
y_p = tf.nn.relu(tf.add(tf.matmul(layer_3_p_b, w_4_p), b_4_p))
g_target_q_idx = tf.placeholder('int32', [None, None], 'output_idx')
target_q_with_idx = tf.gather_nd(y_p, g_target_q_idx)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
def predict(sess, s_t, ep, test_ep = False):
n_power_levels = len(env.V2V_power_dB_List)
if np.random.rand() < ep and not test_ep:
pred_action = np.random.randint(n_RB*n_power_levels)
else:
pred_action = sess.run(g_q_action, feed_dict={x: [s_t]})[0]
return pred_action
def q_learning_mini_batch(current_agent, current_sess):
""" Training a sampled mini-batch """
batch_s_t, batch_s_t_plus_1, batch_action, batch_reward = current_agent.memory.sample()
if current_agent.double_q: # double q-learning
pred_action = current_sess.run(g_q_action, feed_dict={x: batch_s_t_plus_1})
q_t_plus_1 = current_sess.run(target_q_with_idx, {x_p: batch_s_t_plus_1, g_target_q_idx: [[idx, pred_a] for idx, pred_a in enumerate(pred_action)]})
batch_target_q_t = current_agent.discount * q_t_plus_1 + batch_reward
else:
q_t_plus_1 = current_sess.run(y_p, {x_p: batch_s_t_plus_1})
max_q_t_plus_1 = np.max(q_t_plus_1, axis=1)
batch_target_q_t = current_agent.discount * max_q_t_plus_1 + batch_reward
_, loss_val = current_sess.run([optim, g_loss], {g_target_q_t: batch_target_q_t, g_action: batch_action, x: batch_s_t})
return loss_val
def update_target_q_network(sess):
""" Update target q network once in a while """
sess.run(w_1_p.assign(sess.run(w_1)))
sess.run(w_2_p.assign(sess.run(w_2)))
sess.run(w_3_p.assign(sess.run(w_3)))
sess.run(w_4_p.assign(sess.run(w_4)))
sess.run(b_1_p.assign(sess.run(b_1)))
sess.run(b_2_p.assign(sess.run(b_2)))
sess.run(b_3_p.assign(sess.run(b_3)))
sess.run(b_4_p.assign(sess.run(b_4)))
def save_models(sess, model_path):
""" Save models to the current directory with the name filename """
current_dir = os.path.dirname(os.path.realpath(__file__))
model_path = os.path.join(current_dir, "model/" + model_path)
if not os.path.exists(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))
saver.save(sess, model_path, write_meta_graph=False)
def load_models(sess, model_path):
""" Restore models from the current directory with the name filename """
dir_ = os.path.dirname(os.path.realpath(__file__))
model_path = os.path.join(dir_, "model/" + model_path)
saver.restore(sess, model_path)
def print_weight(sess, target=False):
""" debug """
if not target:
print(sess.run(w_1[0, 0:4]))
else:
print(sess.run(w_1_p[0, 0:4]))
# --------------------------------------------------------------
agents = []
sesses = []
for ind_agent in range(n_veh * n_neighbor): # initialize agents
print("Initializing agent", ind_agent)
agent = Agent(memory_entry_size=len(get_state(env)))
agents.append(agent)
sess = tf.Session(graph=g,config=my_config)
sess.run(init)
sesses.append(sess)
# ------------------------- Training -----------------------------
record_reward = np.zeros([n_episode*n_step_per_episode, 1])
record_loss = []
if IS_TRAIN:
for i_episode in range(n_episode):
print("-------------------------")
print('Episode:', i_episode)
if i_episode < epsi_anneal_length:
epsi = 1 - i_episode * (1 - epsi_final) / (epsi_anneal_length - 1) # epsilon decreases over each episode
else:
epsi = epsi_final
if i_episode%100 == 0:
env.renew_positions() # update vehicle position
env.renew_neighbor()
env.renew_channel() # update channel slow fading
env.renew_channels_fastfading() # update channel fast fading
env.demand = env.demand_size * np.ones((env.n_Veh, env.n_neighbor))
env.individual_time_limit = env.time_slow * np.ones((env.n_Veh, env.n_neighbor))
env.active_links = np.ones((env.n_Veh, env.n_neighbor), dtype='bool')
for i_step in range(n_step_per_episode):
time_step = i_episode*n_step_per_episode + i_step
state_old_all = []
action_all = []
action_all_training = np.zeros([n_veh, n_neighbor, 2], dtype='int32')
for i in range(n_veh):
for j in range(n_neighbor):
state = get_state(env, [i, j], i_episode/(n_episode-1), epsi)
state_old_all.append(state)
action = predict(sesses[i*n_neighbor+j], state, epsi)
action_all.append(action)
action_all_training[i, j, 0] = action % n_RB # chosen RB
action_all_training[i, j, 1] = int(np.floor(action / n_RB)) # power level
# All agents take actions simultaneously, obtain shared reward, and update the environment.
action_temp = action_all_training.copy()
train_reward = env.act_for_training(action_temp)
record_reward[time_step] = train_reward
env.renew_channels_fastfading()
env.Compute_Interference(action_temp)
for i in range(n_veh):
for j in range(n_neighbor):
state_old = state_old_all[n_neighbor * i + j]
action = action_all[n_neighbor * i + j]
state_new = get_state(env, [i, j], i_episode/(n_episode-1), epsi)
agents[i * n_neighbor + j].memory.add(state_old, state_new, train_reward, action) # add entry to this agent's memory
# training this agent
if time_step % mini_batch_step == mini_batch_step-1:
loss_val_batch = q_learning_mini_batch(agents[i*n_neighbor+j], sesses[i*n_neighbor+j])
record_loss.append(loss_val_batch)
if i == 0 and j == 0:
print('step:', time_step, 'agent',i*n_neighbor+j, 'loss', loss_val_batch)
if time_step % target_update_step == target_update_step-1:
update_target_q_network(sesses[i*n_neighbor+j])
if i == 0 and j == 0:
print('Update target Q network...')
print('Training Done. Saving models...')
for i in range(n_veh):
for j in range(n_neighbor):
model_path = label + '/agent_' + str(i * n_neighbor + j)
save_models(sesses[i * n_neighbor + j], model_path)
current_dir = os.path.dirname(os.path.realpath(__file__))
reward_path = os.path.join(current_dir, "model/" + label + '/reward.mat')
scipy.io.savemat(reward_path, {'reward': record_reward})
record_loss = np.asarray(record_loss).reshape((-1, n_veh*n_neighbor))
loss_path = os.path.join(current_dir, "model/" + label + '/train_loss.mat')
scipy.io.savemat(loss_path, {'train_loss': record_loss})
# -------------- Testing --------------
if IS_TEST:
print("\nRestoring the model...")
for i in range(n_veh):
for j in range(n_neighbor):
model_path = label + '/agent_' + str(i * n_neighbor + j)
load_models(sesses[i * n_neighbor + j], model_path)
V2I_rate_list = []
V2V_success_list = []
V2I_rate_list_rand = []
V2V_success_list_rand = []
rate_marl = np.zeros([n_episode_test, n_step_per_episode, n_veh, n_neighbor])
rate_rand = np.zeros([n_episode_test, n_step_per_episode, n_veh, n_neighbor])
demand_marl = env.demand_size * np.ones([n_episode_test, n_step_per_episode+1, n_veh, n_neighbor])
demand_rand = env.demand_size * np.ones([n_episode_test, n_step_per_episode+1, n_veh, n_neighbor])
power_rand = np.zeros([n_episode_test, n_step_per_episode, n_veh, n_neighbor])
for idx_episode in range(n_episode_test):
print('----- Episode', idx_episode, '-----')
env.renew_positions()
env.renew_neighbor()
env.renew_channel()
env.renew_channels_fastfading()
env.demand = env.demand_size * np.ones((env.n_Veh, env.n_neighbor))
env.individual_time_limit = env.time_slow * np.ones((env.n_Veh, env.n_neighbor))
env.active_links = np.ones((env.n_Veh, env.n_neighbor), dtype='bool')
env.demand_rand = env.demand_size * np.ones((env.n_Veh, env.n_neighbor))
env.individual_time_limit_rand = env.time_slow * np.ones((env.n_Veh, env.n_neighbor))
env.active_links_rand = np.ones((env.n_Veh, env.n_neighbor), dtype='bool')
V2I_rate_per_episode = []
V2I_rate_per_episode_rand = []
for test_step in range(n_step_per_episode):
# trained models
action_all_testing = np.zeros([n_veh, n_neighbor, 2], dtype='int32')
for i in range(n_veh):
for j in range(n_neighbor):
state_old = get_state(env, [i, j], 1, epsi_final)
action = predict(sesses[i*n_neighbor+j], state_old, epsi_final, True)
action_all_testing[i, j, 0] = action % n_RB # chosen RB
action_all_testing[i, j, 1] = int(np.floor(action / n_RB)) # power level
action_temp = action_all_testing.copy()
V2I_rate, V2V_success, V2V_rate = env.act_for_testing(action_temp)
V2I_rate_per_episode.append(np.sum(V2I_rate)) # sum V2I rate in bps
rate_marl[idx_episode, test_step,:,:] = V2V_rate
demand_marl[idx_episode, test_step+1,:,:] = env.demand
# random baseline
action_rand = np.zeros([n_veh, n_neighbor, 2], dtype='int32')
action_rand[:, :, 0] = np.random.randint(0, n_RB, [n_veh, n_neighbor]) # band
action_rand[:, :, 1] = np.random.randint(0, len(env.V2V_power_dB_List), [n_veh, n_neighbor]) # power
V2I_rate_rand, V2V_success_rand, V2V_rate_rand = env.act_for_testing_rand(action_rand)
V2I_rate_per_episode_rand.append(np.sum(V2I_rate_rand)) # sum V2I rate in bps
rate_rand[idx_episode, test_step, :, :] = V2V_rate_rand
demand_rand[idx_episode, test_step+1,:,:] = env.demand_rand
for i in range(n_veh):
for j in range(n_neighbor):
power_rand[idx_episode, test_step, i, j] = env.V2V_power_dB_List[int(action_rand[i, j, 1])]
# update the environment and compute interference
env.renew_channels_fastfading()
env.Compute_Interference(action_temp)
if test_step == n_step_per_episode - 1:
V2V_success_list.append(V2V_success)
V2V_success_list_rand.append(V2V_success_rand)
V2I_rate_list.append(np.mean(V2I_rate_per_episode))
V2I_rate_list_rand.append(np.mean(V2I_rate_per_episode_rand))
print(round(np.average(V2I_rate_per_episode), 2), 'rand', round(np.average(V2I_rate_per_episode_rand), 2))
print(V2V_success_list[idx_episode], 'rand', V2V_success_list_rand[idx_episode])
print('-------- marl -------------')
print('n_veh:', n_veh, ', n_neighbor:', n_neighbor)
print('Sum V2I rate:', round(np.average(V2I_rate_list), 2), 'Mbps')
print('Pr(V2V success):', round(np.average(V2V_success_list), 4))
print('-------- random -------------')
print('n_veh:', n_veh, ', n_neighbor:', n_neighbor)
print('Sum V2I rate:', round(np.average(V2I_rate_list_rand), 2), 'Mbps')
print('Pr(V2V success):', round(np.average(V2V_success_list_rand), 4))
with open("Data.txt", "a") as f:
f.write('-------- marl, ' + label + '------\n')
f.write('n_veh: ' + str(n_veh) + ', n_neighbor: ' + str(n_neighbor) + '\n')
f.write('Sum V2I rate: ' + str(round(np.average(V2I_rate_list), 5)) + ' Mbps\n')
f.write('Pr(V2V): ' + str(round(np.average(V2V_success_list), 5)) + '\n')
f.write('--------random ------------\n')
f.write('Rand Sum V2I rate: ' + str(round(np.average(V2I_rate_list_rand), 5)) + ' Mbps\n')
f.write('Rand Pr(V2V): ' + str(round(np.average(V2V_success_list_rand), 5)) + '\n')
current_dir = os.path.dirname(os.path.realpath(__file__))
marl_path = os.path.join(current_dir, "model/" + label + '/rate_marl.mat')
scipy.io.savemat(marl_path, {'rate_marl': rate_marl})
rand_path = os.path.join(current_dir, "model/" + label + '/rate_rand.mat')
scipy.io.savemat(rand_path, {'rate_rand': rate_rand})
demand_marl_path = os.path.join(current_dir, "model/" + label + '/demand_marl.mat')
scipy.io.savemat(demand_marl_path, {'demand_marl': demand_marl})
demand_rand_path = os.path.join(current_dir, "model/" + label + '/demand_rand.mat')
scipy.io.savemat(demand_rand_path, {'demand_rand': demand_rand})
power_rand_path = os.path.join(current_dir, "model/" + label + '/power_rand.mat')
scipy.io.savemat(power_rand_path, {'power_rand': power_rand})
# close sessions
for sess in sesses:
sess.close()
# if __name__ == '__main__':
# tf.app.run()