-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtruncate_w2v2.py
70 lines (60 loc) · 3.62 KB
/
truncate_w2v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import torch
### This file was used to truncate the pre-trained XLS-R files for faster inference.
def truncate_w2v2(pretrained_bin: str, layers_to_keep: int, num_layers):
"""
Note: we will keep one extra layer because there's an extra layer_norm after the
final layer. Make sure you use the second-to-last hidden state!
See: https://github.com/huggingface/transformers/blob/31d452c68b34c2567b62924ee0df40a83cbc52d5/src/transformers/models/wav2vec2/modeling_wav2vec2.py#L894
Args:
- pretrained_bin : str Path to "pytorch_model.bin" file of local clone of
Wav2Vec2 model.
- layers_to_keep: int Number of transformer layers to keep.
- num_layers: int Total number of transformer layers in pre-trained model (24
or 48).
"""
_model_dict = torch.load(pretrained_bin)
for idx in range(layers_to_keep+1, num_layers):
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.k_proj.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.k_proj.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.v_proj.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.v_proj.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.q_proj.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.q_proj.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.out_proj.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.attention.out_proj.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.layer_norm.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.layer_norm.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.feed_forward.intermediate_dense.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.feed_forward.intermediate_dense.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.feed_forward.output_dense.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.feed_forward.output_dense.bias"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.final_layer_norm.weight"]
del _model_dict[f"wav2vec2.encoder.layers.{idx}.final_layer_norm.bias"]
# Remove these as well to avoid warning when loading.
del _model_dict["project_hid.weight"]
del _model_dict["project_hid.bias"]
del _model_dict["project_q.weight"]
del _model_dict["project_q.bias"]
del _model_dict["quantizer.codevectors"]
del _model_dict["quantizer.weight_proj.weight"]
del _model_dict["quantizer.weight_proj.bias"]
return _model_dict
if __name__ == "__main__":
script_dir = os.path.dirname(__file__)
pretrained_basedir = os.path.join(script_dir, "models", "xls-r")
truncated_basedir = os.path.join(script_dir, "models", "xls-r-trunc")
xlsr_names = ["wav2vec2-xls-r-300m", "wav2vec2-xls-r-1b", "wav2vec2-xls-r-2b"]
xlsr_bins = {x: os.path.join(pretrained_basedir, x, "pytorch_model.bin") for x in xlsr_names}
to_truncate = [
("wav2vec2-xls-r-300m", 5, 24), ("wav2vec2-xls-r-300m", 21, 24),
("wav2vec2-xls-r-1b", 10, 48), ("wav2vec2-xls-r-1b", 41, 48),
("wav2vec2-xls-r-2b", 10, 48), ("wav2vec2-xls-r-2b", 41, 48),
]
for xlsr_name, layers_to_keep, num_layers in to_truncate:
print(f"Truncating {xlsr_name} to {layers_to_keep} transformer layers...")
model_dict = truncate_w2v2(xlsr_bins[xlsr_name], layers_to_keep, num_layers)
new_dir_name = xlsr_name + "-lay" + str(layers_to_keep)
out_path = os.path.join(truncated_basedir, new_dir_name, "pytorch_model.bin")
torch.save(model_dict, out_path)
print("Finished.")