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Abstract

It is known that finding approximate optima of non-convex functions is in-
tractable. We give a simple proof to show that this problem is not even com-
putable.
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1 Introduction and Preliminaries

We consider the problem of finding the global minima of a non-convex continuous 
function f : C → R, where C ⊂ Rd is a closed, compact subset. Global minima is 
the point x∗ ∈C which satisfies the following property: f (x∗)≤ f (x) for all x ∈C. 
The function f  attains this minimum at least once by extreme value theorem. Our 
goal is to find one such point. This problem is well-studied with many books 
written on the subject, see for example [3].

We note that we consider an oracle setting, where the function values are given 
by an oracle. This is different from the computablity of optima computable real 
functions studied for example in [6]. It is easy to see that a simple grid search will 
output a sequence of points converging to the global optima. And for a Lipschitz 
continuous function, it requires an exponential number of oracle calls [5] if the 
Lipschitz constant is known.

Let us define S = {x|| f (x)− f (x∗)| ≤ ε} and term the members of S as ε-
optima. In optimization literature [?, ?], it is known that finding approximations 
to optima is not tractable for non-convex functions. For non-convex functions, ε-
stationary point which is weaker than ε-optima is also known to be not tractable 
[?]. We show more in this paper, that this set S is not computable. This is much 
stronger than saying they it is intractable. We assume for formality finite-precision 
numbers. This assumption of finite-precision numbers is useful to model real-
world systems and we show is not restrictive.
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1.1 Finite Precision Reals

We now briefly explain what we mean by this. Consider any real number x ∈ R. 
Let r0 be the largest integer such that r0 ≤ x. Having chosen r0,r1, . . . ,rk−1 choose 
largest positive integer rk such that

r0 +
r1

10
+

r2

102 + . . .
rk

10k ≤ x.

This is the decimal expansion of the number. We can check that this expansion 
is unique. We define precision length to be the number k. Now for finite precision 
representaion of a real we need to specify this precision length k. And we say for 
any real x ∈ R, the numbers r0,r1, . . . ,rk is its finite precision representation. Note 
that ri,0 ≤ i ≤ k can be zero. For a point x ∈ Rd , given a precision length k we can 
have decimal expansions for all it’s co-ordinates. Note that though we give binary 
representations to the Turing machine, for simplicity we assume precisions denote 
the decimal precisions.

Remark 1.1 Suppose r1, . . . ,rk is the finite precision representation with length k
of some real x. Let x̄ be the number with decimal expansion r1, . . . ,rk as x and 
rl = 9 for l ≥ k+1. And let x be the number with decimal expansion r1, . . . ,rk as x
and rl = 0 for l ≥ k+1. And the length of this interval [x, x̄] is ε = 10−k. We then 
say with precision length k we can represent consecutive numbers with gap greater 
than or equal to ε .

1.2 The Problem

We assume there is an oracle for our continuous function f . This oracle gives the 
value f (x) up to any finite-precision for an given finite-precision x. The Turing-
machine has access to this function oracle. We give also give a value ε > 0 as 
input to the Turing machine. Our main problem is to write any point xo of the finite 
precision length such that | f (xo)− f (x∗)|< ε i.e., it should find ε− approximation 
of the global optima. We show that this problem is not computable.

Let us assume we have a three-tape Turing machine, one is used for calcu-
lations, second is for the giving the finite precision real and the precision length 
required to the function oracle and third one has the value returned from the oracle 
[4]. Note that the third tape can also store the previous values. That is suppose we 
start with x0 and find x1, . . . ,xk this tape can store all these and also the correspond-
ing function values obtained from the function oracle f (x0), . . . , f (xk) for finding 
xk+1. We now give definition of the standard Turing machine here:

Definition 1.2 Turing machine has a three infinite tapes divided into cells, a read-
ing head which scans one cell of the tape at a time, and a finite set of internal states 
Q = {q0,q1, . . . ,qn}, n ≥ 1. Each cell is either blank or has symbol 1 written on 
it. In a single step the machine may simultaneously (1) change the from one state 
to another; (2) change the scanned symbol s to another symbol s′ ∈ S = {1,B}; 
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(3) move the reading head one cell to the right (R) or left (L). This operation of 
machine is controlled by a partial map Γ : Q×S3 → Q× (S×{R,L})3.

Remark 1.3 The map Γ viewed as a finite set of quintuples is called a Turing 
program. The interpretation is that if (q,s1,s2,s3,q′,s′1,X1,s′2,X2,s′3,X3) ∈ Γ, in 
state q, scanning symbols s1,s2,s3 changes state to q′ and in the tape i input symbol 
to s′i and moves to scan one square to the right if Xi = R (or left if Xi = L.) in the 
tape i.

We consider this problem in the paper.

Problem 1.4 Given a continuous, nonconvex function f , is there a Turing machine 
with access to the function oracle which can find a ε− approximation to the global 
optima of the function f  ?

2 Main Theorem

Given the objective function f , let the set of global minima be denoted by G f . Now 
consider ε-approximation to the global minima.

Lemma 2.1 For all ε > 0 there exists a point x∗n of finite precision length n such 
that | f (x∗)− f (x∗n)|< ε .

Proof
Let δ > 0 be such that |x− y| < δ  implies | f (x)− f (y)| < ε . Such an δ > 0

exists for all ε > 0 because the function f  is continuous. Let n be the precision 
length required to represent numbers with gap ε/10 between consecutive numbers 
(Remark 1.1). Then we see for the global minima x∗ (like for all other points) it’s 
finite precision representation x∗n with precision length n is such that |x∗n − x∗|< ε .

Definition 2.2 Let G f
ε,k be the set of points with given finite precision length k ≥ 1

where the function value is ε > 0 close to the global minima. And G f
ε  be the union 

of all such sets.

We consider only finite-precision numbers. As there are only finite number of 
points with precision length k, the set G f

ε,k is finite. Since we would like an algo-
rithm to computably converge to a single point, for simplicity we assume the global 
optima is unique i.e., G f  is a singleton. This is not uncommon in optimization lit-
erature as strict convexity gives unique local (global) minima and is assumed for 
objective functions. Now we state the main theorem.

Lemma 2.3 There is no algorithm to check if a point xk is a ε− approximation to 
the global optima.
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Proof
We consider an equivalent problem. We define

hε
xk
(x) := max{0, f (xk)− f (x)− ε}.

Since our objective function f  is continuous, hε
xk
(·) is also continuous. This func-

tion is identically zero if and only if | f (xk)− f (x)|< ε , for all x. This happens only 
if xk is a ε− approximation to the optimum (See Figure 1). Note that xk and x are 
represented with some finite precision. 
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Figure 1: The figure on the right shows a sample objective function. The figure of 
the left is the function max{0, f (60)− f (x)}. This function is not identically zero 
as x = 60 is not the global minima of f (x).

Thus the set G f
ε  of all points with finite precision that are ε close to the global 

minima, is precisely the set of all points xk where the function hε
xk
(·) is identically 

zero. That is,
xk ∈ G f

ε ⇔ hε
xk
(x) = 0 for all x ∈C

But this cannot be checked for a particular xk unless it is checked for all x of any 
finite precision length. As there are infinitely many such points, there is no Turing 
machine which can compute (halt) if a function is zero at infinitely many points. 
So given any point xk, it is not possible to say if it is an ε− approximation to the 
global optima or not.

Theorem 2.4 We assume the objective function we wish to minimize is known by 
its oracle. There is no algorithm which can compute the ε-approximate optima of 
a continuous, non-convex objective function on a compact domain.

Proof
Let x′k be any point of some finite precision length nk such that | f (x∗)− f (x′k)|<

ε . Such a point exists by Lemma 2.1 i.e., the set G f
ε,nk  is non-empty for ε > 0. 

Suppose that we have an algorithm to find a ε/2− approximation point x′k.
Now for any point xk ∈ C we can say it is ε close to optimum if | f (xk)−

f (x′k)|< ε/2 else it is not. Thus we have an algorithm to check if a point is an ε−
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approximation to the global optima or not. This is a contradiction to Lemma 2.3. 
Thus for a ε > 0, there is no algorithm to find a ε− approximation to the global 
optima.

Corollary 2.5 The finite-precision assumption is not restrictive. If there is an al-
gorithm to find a general real number which is ε− approximation, we can take the 
first k digits which gives ε− approximation to get a finite precision approximation.

Corollary 2.6 The problem of checking whether local minima z is global is not 
computable as this also involves checking whether hε

z (·) is identically zero.

Remark 2.7 Even in presence of higher order oracles, i.,e oracles which give 
derivatives of the function, the equivalent problem of checking if hε

z (·) is identically 
zero remains. Hence global optima even in presence of these higher-order function 
oracle is not computable.

Remark 2.8 As we mentioned before, our result is for algorithms having access 
to the function oracle. This is different from the setting of computable function and 
reals studied in computable analysis. [6]

Remark 2.9 As we can find an ball of some radius ω where the continuous func-
tion hε

z (·) is non-zero around a local optima. The same proof does not hold for 
converging to local optima as we can check if hε

z (·) is identically zero in steps of 
size less than ω .

3 Global Optima Property

In this section, we see a simple property a function satisfies if the global optima is 
computable. For this let us first define the set G f  of global optima of the function 
f : C → R, C ⊂ Rd as

G f := {x |  for all y, f (x)≤ f (y), x ∈C}.

This set G f  is a subset of C. As we are interested in finding only one optima, 
we call G f  computable if atleast one of it’s member is.

Definition 3.1 A function f  satisfies global property if there is a first order (3-ary) 
predicate Pζ (y,x) and a ζ ∈R such that Pζ (y,x) is True for all y,x in the domain C
of the function f .

We say a property Pζ (y,x) can be computed if ζ  in the definition can be com-
puted.

Definition 3.2 A set of functions F  satisfies a global property if there is a first 
order predicate Pζ (y,x) satisfied by all the functions F .
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Remark 3.3 If the global minima is computable for a function f , we can easily 
define the ζ  to be the norm of a member of G f  which is computable, say x∗ and the 
global property to be

Pζ (y,x) is True for all x, y if there exists a x s.t. ∥ x ∥= ζ .

It is clear that if global optima is computable then this P∥x∗∥(y,x) is satisfied by the 
function f  and ∥ x∗ ∥ can be computed.

Remark 3.4 Lipschitz continuity is another example of such a global property. Let 
PL(y,x) be

| f (x)− f (y)| ≤ L ∥ x− y ∥,  for all x,y ∈C.

And here the number ζ  is the Lipschitz constant L. Let the set of functions on some 
compact domain C satisfying the Lipschitz property be denoted by L . It is known 
that if the Lipschitz constant or an upper bound to it is known then the global 
optima for this class of functions L  is computable. (For example refer to Theorem 
1.1.2 of [5]). Another example of a global property is bounded derivatives. If a 
bound on the gradient is known then the global minima can be computed.

4 Conclusion

We have proved that there is no algorithm which finds a ε− approximation to the 
optima of nonconvex function f . This result holds even if the function has higher-
order derivatives.
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