A Performance Analysis Of
Parthenon/Phoebus

Ankush Jain
Mochi— Aug 10, 2022
Parthenon —Aug 11, 2022

Goals

1. Understand why Parthenon performs the way it does
* AMR: Adaptive Mesh Refinement

2. Have at least an intuitive model of how different inputs affect perf

3. Use these to identify promising avenues
* For interesting load-balancing/optimizing problems
* Potentially using in-network capabilities

 Where we are: advanced stages of 1. and 2. Early stages of 3.

Parthenon - Block-Based AMR

e A 3D mesh is simulated
e Say 4x4x4 cells

* Divided into meshblocks
e Uniform and contiguous
* |.e. always 2x2x2

* Meshblocks are uniformly allocated to ranks
* Meshblocks get refined and derefined

. 4x4 mesh
* New meshblocks are always the same size decomposed into ..
e je. 2X2x2 4X 2x2 meshblocks

3

Execution Model: Tasks and Barriers

Rank 1 Rank 2 Rank 3 Asynchronicity (example):

® MeshBlock

Task B

Local Barrier Task A

Rank e 000

Timestep — Task B

Task C

EEYS e gy o TN

Task C IDLE

Jooooocooooooo o o=

Collective] o
(Global

Synchronization

Point)

Task B * Tasks: Compute and/or Network kernels
* (per meshblock)

e A task schedule forms a timestep

* Limited amounts of asynchronicity

Task B

Task C Task C

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Task A : Task A
|
|
|
|
|
|
|
|
|
|
|
v

-

Workload: Actual Task Schedule

Subscripts. CN: Compute + Network Task. NO: Network Only. CO: Compute Only.

Flux Correction Some messages exchanged (MPI_Send/Wait). Some compute.

Boundary Communication O(100K) messages exchanged every timestep (at 512 ranks)

FillDerived (Compute Kernel) A compute kernel per meshblock

AllGather (MPI Collective) A collective (+ global sync point). Gathers load info etc.

Load Balancing Only runs if load info gathered indicates variance > threshold

There’s another collective/synchronization pt at the end of timestep, but it’s not as interesting.
(First collective takes care of stragglers created by this timestep. Not much work happens after)

-

Some rule of thumb numbers

* Deck: Blast Wave 3D /Phoebus/Parthenon

* Mesh = 12873, Meshblock = 1673
* Initial Meshblock Count: 512
* 512 CPU-only ranks. 32 Wolf nodes.
* MPI over PSM.

* 30,000 timesteps approx, 4.5 hours.
e 500ms/timestep on average
* (Timestep gets slower over time with refinement)

Total Time (s)

—— FCcpn —— BCno —— FDco — AGpno —— [Bpno
Total Time For Each Phase/Rank
8000s A
6000s A
4000s A
2000s A
™ B o W i W n._
OS- 1 1 1 1 1 1
0 100 200 300 400 500

Rank ID

Rough total time breakdown:
(No need to remember this)

FC: 2500s
BC: 4000s
FD: 2500s
AG: 8000s
LB: 250s

Total: 17,250s for 30,000 timesteps

Takeaways:

1. LoadBalancing time is negligible
(Nothing about quality)
2. FCqy and FDg variance not much
(At least in aggregate)
BoundaryComm has a lot of variance
4. AllGather has a lot of variance

“w

Scoping Problem Before Proceeding

* Not concerned with: compute kernel implementation, caching,
prefetching, data layout etc

* Concerned with: load balancing, communication, scheduling
* i.e. aspects that can be solved with better approaches along these dimensions

AllGather takes 8000s of 17000s. Why!?

* Collectives are expensive, but not that expensive
* Hypothesis: Poor load balance

* Data for: wide variance in time spent by each rank at collective
* Ranks that finish early wait for stragglers

e Data against: work allocation in terms of meshblocks
* Meshblock allocation is reasonably well-balanced

* Conclusions:

* 1. Meshblock count is a reasonable, but imperfect proxy for load per rank
e 2. We possibly need to implement communication differently

—— FCcy —— BCno —— FDco

—— AGno | — LBno

Min And Max Collective Times Across All Ranks

2.00s A

1.50s -

1.00s -

Time (s)

0.50s A

0.00s -

— AGpo:Max
——— AGpo:Median
—— AGpo:Min5
—— AGpno:Min

5';;_?37*!;&@@*'"“%!“!!]#'

0 5000 10000 15000 20000 25000 30000
Timestep

10

Load Distribution Across Timesteps

54 —— Min Load
—— Avg Load
- Max Load
4_
=
>
S
~ 3
O
(@)
o)
e
(V)]
()
=27
©
©
(@]
|
1 -
04 e G o CGEED CGEEED G a
0 5000 10000 15000 20000 25000 30000

Timestep

Red dots: load-balancing event

Meshblock distribution across ranks is
not perfect, but as good as it gets

When avg load is 2.7 meshblocks:

* most ranks will get 3
* some will get 2

11

Next: Analyze Phase-Wise Breakdown Of Time

* Load reasonably balanced in terms of meshblock count
* But meshblock count is an imperfect proxy for timestep time
* Hence the stragglers

* Next:
* Look at each phase (i.e. task) in a timestep separately
 How well does meshblock count explain ‘phase time’?
 What other factors do you need to explain ‘phase time’?

‘ - FCCN

Load vs FCcy

- BCyo —— FDco —— AGno —— LBno

]
L]

2 3 4
Load (MeshBlock Count)

160 ms A L
FluxCorrection
140 ms A
Total Time spent: —
120 ms A
2500/17000s . ms r_l
2 L
Takeaway: for this task, @ 100 ms -
meshblock count is a useful » r_‘
but imperfect signal for load @ 80msH _ L
o R
(Too much variance for a 60 ms -)
given meshblock count) —
40 ms -
— 1 -
20 ms -
1

— o |

BCno

BoundaryComm

Total Time Spent: 4000/17000s
Takeaway: for task latency,
meshblock count is not a useful
signal at all.

Next, let’s break this down into:

1. Load vs MessageCount
2. MessageCount vs Phase Time

Phase Time BCyo

—— FDco —— AGpo —— LBpo

Load vs BCpo

400 ms A

300 ms +

200 ms A

100 ms

0 ms

Load (MeshBlock Count)

Load vs MsgCount (BC)
900 -
800 -

BoundaryComm

~
o
o
1
|
|

1. Alot of messages are
exchanged (500/rank *

500 ranks = 250K/round)
2. MeshBlockCount is a

good/imperfect signal for
MsgCount

Message Count MsgCount (BC)

Load (MeshBlock Count)

MsgCount (BC) vs BCyo
400 ms A —_ T T
BoundaryComm _
§ 300 ms

Takeaway: 3
1. MeshBlockCount is a E

useful and imperfect Q 200 ms 1 _

signal for MsgCount T T

2. MsgCount is a poor signal

for round latency 100 ms 1 J

[TT]

0 ms A

100 200 300 400 500 600 700 800 900
Message Count MsgCount (BC)

FillDerived

Total Time Spent:
2500/17000s

Takeaway: for this task,
meshblock count is a useful
but imperfect signal for load

(Too much variance for a
given meshblock count)

Phase Time FDco

BCno

—— FDco ‘ —— AGpo —

Load vs FDco

LBno

180 ms

160 ms

140 ms A

120 ms

100 ms

80 ms

60 ms

40 ms A

20 ms H

sl

T T T

2 3 4
Load (MeshBlock Count)

BCno —— FDco | — AGno

MPI_AllGather
Total Time spent: 4000s to 8000s (out of 17000s)

Takeaway: time spent in MPI|_AllGather is inversely
proportional to time spent in FC + BC + FD.

Independently this phase is not interesting.

—— LBnwo

BCno —— FDco —— AGpo —— LBno

LoadBalancing
Total time spent: 250s-500s out of 17000s.

This phase is too minor to be interesting in its own right.

19

What's Going On With BoundaryComm

* O(100,000) messages are exchanged every timestep.
* Tail latency pattern exists
* Gets worse over time. (More meshblocks, => more messages)

* The set of all asynchronously exchanged messages forms a collective.
* Can we optimize/schedule them collectively?

Messages

Send/Receive Latency Distribution (BoundaryComm, ts:1)

100K A

80K -

60K A

40K -

20K A

0K -

-— Send
Receive

200

Time (ms)

300

400

500

21

Messages

Send/Receive Latency Distribution (BoundaryComm, ts:50)

100K -

80K 1

60K 1

40K 1

20K 1

0K | S o N

—— Send
—— Receive

Send/Receive Latency Distribution (BoundaryComm, ts:500)

100K A

80K 1

Messages
(=)
o
~
R

o

o

~
L

20K A

— Send
—— Receive

oK

0 100

200

300 400
Time (ms)

500

Messages

Send/Receive Latency Distribution (BoundaryComm, ts:5000)

0 100 200 300 400 500

Time (ms)

Send/Receive Latency Distribution (BoundaryComm, ts:25000)

100K - 1 — Send 100k { — Send .

| —— Receive —— Receive H

i i

80K - ' :

! 80K - !

1 1

1 1

1 1

I I

60K 1 i § 60K i

1 3 1

: : :

I s I

40K A . # 40K i

1 1

I I

I I

I I

1 1

20K A : 20K A :

I I

I I

1 1

W H w 1

OK ! 0K - . 1
0 100 200 300 400 500 0 100 200 300 400 500

Time (ms) Time (ms)

22

Total Time For Each Phase/Rank

25000s -
FC: 25005 -> 1300 s _20000s -
BC: 4000 s -> 5000 s n
: - W
FD: 2500 s -> 2500 s & 15000 -
AG: 4000-800s -> 15000- =
>25000s —
LB: same |4§ 10000s -
A
Total: 17000s -> 36000s 5000s A I r
o TR TR f il ' r
OS_ i:‘mthluw‘ “l :w “ IHL “,"ﬂ“ Lll “ ‘“ Wl

0 100 200 300 400 500
Rank ID

23

Next Steps

* Fairly good idea of the execution model and challenges
 Significant load imbalance exists
* Mesh block count a poor proxy for load balancing
 TODO: impact of timing-based load-balancing?

e Can do: Microbenchmarks to quantify impact of different approaches
* Lots of MPI_Sends + MPI_Recvs — with similar distributions.

* Possible steps forward:
* Network-based monitoring of all these statistics in realtime
* Network-based load-balancing services
* Optimize asynchronous messages as a collective operation

