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Goals

1. Understand why Parthenon performs the way it does
* AMR: Adaptive Mesh Refinement

2. Have at least an intuitive model of how different inputs affect perf

3. Use these to identify promising avenues
* For interesting load-balancing/optimizing problems
* Potentially using in-network capabilities

 Where we are: advanced stages of 1. and 2. Early stages of 3.



Parthenon - Block-Based AMR

e A 3D mesh is simulated
e Say 4x4x4 cells

* Divided into meshblocks
e Uniform and contiguous
* |.e. always 2x2x2

* Meshblocks are uniformly allocated to ranks
* Meshblocks get refined and derefined

. 4x4 mesh
* New meshblocks are always the same size decomposed into ..
e je. 2X2x2 4X 2x2 meshblocks
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Execution Model: Tasks and Barriers
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Workload: Actual Task Schedule

Subscripts. CN: Compute + Network Task. NO: Network Only. CO: Compute Only.

Flux Correction Some messages exchanged (MPI_Send/Wait). Some compute.

Boundary Communication O(100K) messages exchanged every timestep (at 512 ranks)

FillDerived (Compute Kernel) A compute kernel per meshblock

AllGather (MPI Collective) A collective (+ global sync point). Gathers load info etc.

Load Balancing Only runs if load info gathered indicates variance > threshold

There’s another collective/synchronization pt at the end of timestep, but it’s not as interesting.
(First collective takes care of stragglers created by this timestep. Not much work happens after)
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Some rule of thumb numbers

* Deck: Blast Wave 3D /Phoebus/Parthenon

* Mesh = 12873, Meshblock = 1673
* Initial Meshblock Count: 512
* 512 CPU-only ranks. 32 Wolf nodes.
* MPI over PSM.

* 30,000 timesteps approx, 4.5 hours.
e 500ms/timestep on average
* (Timestep gets slower over time with refinement)



Total Time (s)
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Rough total time breakdown:
(No need to remember this)

FC: 2500s
BC: 4000s
FD: 2500s
AG: 8000s
LB: 250s

Total: 17,250s for 30,000 timesteps

Takeaways:

1. LoadBalancing time is negligible
(Nothing about quality)
2. FCqy and FDg variance not much
(At least in aggregate)
BoundaryComm has a lot of variance
4. AllGather has a lot of variance
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Scoping Problem Before Proceeding

* Not concerned with: compute kernel implementation, caching,
prefetching, data layout etc

* Concerned with: load balancing, communication, scheduling
* i.e. aspects that can be solved with better approaches along these dimensions



AllGather takes 8000s of 17000s. Why!?

* Collectives are expensive, but not that expensive
* Hypothesis: Poor load balance

* Data for: wide variance in time spent by each rank at collective
* Ranks that finish early wait for stragglers

e Data against: work allocation in terms of meshblocks
* Meshblock allocation is reasonably well-balanced

* Conclusions:

* 1. Meshblock count is a reasonable, but imperfect proxy for load per rank
e 2. We possibly need to implement communication differently
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Load Distribution Across Timesteps
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Red dots: load-balancing event

Meshblock distribution across ranks is
not perfect, but as good as it gets

When avg load is 2.7 meshblocks:

* most ranks will get 3
* some will get 2
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Next: Analyze Phase-Wise Breakdown Of Time

* Load reasonably balanced in terms of meshblock count
* But meshblock count is an imperfect proxy for timestep time
* Hence the stragglers

* Next:
* Look at each phase (i.e. task) in a timestep separately
 How well does meshblock count explain ‘phase time’?
 What other factors do you need to explain ‘phase time’?
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BCno

BoundaryComm

Total Time Spent: 4000/17000s
Takeaway: for task latency,
meshblock count is not a useful
signal at all.

Next, let’s break this down into:

1. Load vs MessageCount
2. MessageCount vs Phase Time
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Load vs MsgCount (BC)
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MsgCount (BC) vs BCyo
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FillDerived

Total Time Spent:
2500/17000s

Takeaway: for this task,
meshblock count is a useful
but imperfect signal for load

(Too much variance for a
given meshblock count)
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BCno —— FDco | — AGno

MPI_AllGather
Total Time spent: 4000s to 8000s (out of 17000s)

Takeaway: time spent in MPI|_AllGather is inversely
proportional to time spent in FC + BC + FD.

Independently this phase is not interesting.
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BCno —— FDco —— AGpo —— LBno

LoadBalancing
Total time spent: 250s-500s out of 17000s.

This phase is too minor to be interesting in its own right.
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What's Going On With BoundaryComm

* O(100,000) messages are exchanged every timestep.
* Tail latency pattern exists
* Gets worse over time. (More meshblocks, => more messages)

* The set of all asynchronously exchanged messages forms a collective.
* Can we optimize/schedule them collectively?



# Messages

Send/Receive Latency Distribution (BoundaryComm, ts:1)

100K A

80K -

60K A

40K -

20K A

0K -

-— Send
Receive

200

Time (ms)

300

400

500

21



# Messages

Send/Receive Latency Distribution (BoundaryComm, ts:50)
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Total Time For Each Phase/Rank
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Next Steps

* Fairly good idea of the execution model and challenges
 Significant load imbalance exists
* Mesh block count a poor proxy for load balancing
 TODO: impact of timing-based load-balancing?

e Can do: Microbenchmarks to quantify impact of different approaches
* Lots of MPI_Sends + MPI_Recvs — with similar distributions.

* Possible steps forward:
* Network-based monitoring of all these statistics in realtime
* Network-based load-balancing services
* Optimize asynchronous messages as a collective operation



