
A Performance Analysis Of 
Parthenon/Phoebus

Ankush Jain
Mochi – Aug 10, 2022

Parthenon – Aug 11, 2022

1



Goals

1. Understand why Parthenon performs the way it does
• AMR: Adaptive Mesh Refinement

2. Have at least an intuitive model of how different inputs affect perf
3. Use these to identify promising avenues
• For interesting load-balancing/optimizing problems
• Potentially using in-network capabilities

• Where we are: advanced stages of 1. and 2. Early stages of 3.

2



Parthenon - Block-Based AMR

• A 3D mesh is simulated
• Say 4x4x4 cells

• Divided into meshblocks
• Uniform and contiguous
• I.e. always 2x2x2

• Meshblocks are uniformly allocated to ranks
• Meshblocks get refined and derefined
• New meshblocks are always the same size
• i.e. 2x2x2

4x4 mesh
decomposed into

4X 2x2 meshblocks

3



Execution Model: Tasks and Barriers

4

Task A

Task B

Task C

Task A

Task B

Task C

Task A

Task B

Task C

Task A

Task B

Task C

Task A

Task B

Task C

Task A

Task B

Task C

Local Barrier

Collective
(Global 
Synchronization 
Point)

IDLE

Rank 1 Rank 2 Rank 3

Rank

Task A
Task A Task A

Task A

MeshBlock

Timestep

• Tasks: Compute and/or Network kernels 
• (per meshblock)

• A task schedule forms a timestep
• Limited amounts of asynchronicity

Asynchronicity (example):



Workload: Actual Task Schedule

5

FCCN

BCNO

FDCO

AGNO

LBNO

Subscripts. CN: Compute + Network Task. NO: Network Only. CO: Compute Only.

Flux Correction

Boundary Communication

FillDerived (Compute Kernel)

AllGather (MPI Collective)

Load Balancing

Some messages exchanged (MPI_Send/Wait). Some compute.

O(100K) messages exchanged every timestep (at 512 ranks)

A non-uniform compute kernel per meshblock

A collective (+ global sync point). Gathers load info etc.

Only runs if load info gathered indicates variance > threshold

There’s another collective/synchronization pt at the end of timestep, but it’s not as interesting.
(First collective takes care of stragglers created by this timestep. Not much work happens after)



Some rule of thumb numbers

• Deck: Blast Wave 3D /Phoebus/Parthenon
• Mesh = 128^3, Meshblock = 16^3
• Initial Meshblock Count: 512
• 512 CPU-only ranks. 32 Wolf nodes.
• MPI over PSM.

• 30,000 timesteps approx, 4.5 hours.
• 500ms/timestep on average
• (Timestep gets slower over time with refinement)

6



7

Rough total time breakdown:
(No need to remember this)

FC: 2500s
BC: 4000s
FD: 2500s
AG: 8000s
LB: 250s

Total: 17,250s for 30,000 timesteps

Takeaways:

1. LoadBalancing time is negligible
(Nothing about quality)

2. FCCN and FDCO variance not much
(At least in aggregate)

3. BoundaryComm has a lot of variance
4. AllGather has a lot of variance



Scoping Problem Before Proceeding

• Not concerned with: compute kernel implementation, caching, 
prefetching, data layout etc
• Concerned with: load balancing, communication, scheduling
• i.e. aspects that can be solved with better approaches along these dimensions

8



AllGather takes 8000s of 17000s. Why!?

• Collectives are expensive, but not that expensive
• Hypothesis: Poor load balance
• Data for: wide variance in time spent by each rank at collective
• Ranks that finish early wait for stragglers

• Data against: work allocation in terms of meshblocks
• Meshblock allocation is reasonably well-balanced

• Conclusions:
• 1. Meshblock count is a reasonable, but imperfect proxy for load per rank
• 2. We possibly need to implement communication differently

9



10



• Red dots: load-balancing event

• Meshblock distribution across ranks is 
not perfect, but as good as it gets

• When avg load is 2.7 meshblocks:
• most ranks will get 3
• some will get 2

11



Next: Analyze Phase-Wise Breakdown Of Time

• Load reasonably balanced in terms of meshblock count
• But meshblock count is an imperfect proxy for timestep time
• Hence the stragglers

• Next:
• Look at each phase (i.e. task) in a timestep separately
• How well does meshblock count explain ‘phase time’?
• What other factors do you need to explain ‘phase time’?

12



13

FluxCorrection

Total Time spent: 
2500/17000s

Takeaway: for this task, 
meshblock count is a useful 
but imperfect signal for load

(Too much variance for a 
given meshblock count) 



14

BoundaryComm

Total Time Spent: 4000/17000s

Takeaway: for task latency, 
meshblock count is not a useful 
signal at all.

Next, let’s break this down into:

1. Load vs MessageCount
2. MessageCount vs Phase Time



15

BoundaryComm

1. A lot of messages are 
exchanged (500/rank * 
500 ranks = 250K/round)

2. MeshBlockCount is a 
good/imperfect signal for 
MsgCount



16

BoundaryComm

Takeaway:
1. MeshBlockCount is a 

useful and imperfect 
signal for MsgCount

2. MsgCount is a poor signal 
for round latency



17

FillDerived

Total Time Spent: 
2500/17000s

Takeaway: for this task, 
meshblock count is a useful 
but imperfect signal for load

(Too much variance for a 
given meshblock count) 



18

MPI_AllGather

Total Time spent: 4000s to 8000s (out of 17000s)

Takeaway: time spent in MPI_AllGather is inversely 
proportional to time spent in FC + BC + FD.

Independently this phase is not interesting.



19

LoadBalancing

Total time spent: 250s-500s out of 17000s.

This phase is too minor to be interesting in its own right.



What’s Going On With BoundaryComm

• O(100,000) messages are exchanged every timestep.
• Tail latency pattern exists
• Gets worse over time. (More meshblocks, => more messages)
• The set of all asynchronously exchanged messages forms a collective.
• Can we optimize/schedule them collectively?

20



21



22



23

FC: 2500 s -> 1300 s
BC: 4000 s -> 5000 s
FD: 2500 s -> 2500 s
AG: 4000-800s -> 15000-
>25000s
LB: same

Total: 17000s -> 36000s



Next Steps

• Fairly good idea of the execution model and challenges
• Significant load imbalance exists
• Mesh block count a poor proxy for load balancing
• TODO: impact of timing-based load-balancing?

• Can do: Microbenchmarks to quantify impact of different approaches
• Lots of MPI_Sends + MPI_Recvs – with similar distributions.

• Possible steps forward:
• Network-based monitoring of all these statistics in realtime
• Network-based load-balancing services
• Optimize asynchronous messages as a collective operation

24


