-
Notifications
You must be signed in to change notification settings - Fork 8.2k
/
cached_embedding.py
140 lines (127 loc) · 6.52 KB
/
cached_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import base64
import logging
from typing import Optional, cast
import numpy as np
from sqlalchemy.exc import IntegrityError
from configs import dify_config
from core.entities.embedding_type import EmbeddingInputType
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.rag.embedding.embedding_base import Embeddings
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.dataset import Embedding
logger = logging.getLogger(__name__)
class CacheEmbedding(Embeddings):
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
self._model_instance = model_instance
self._user = user
def embed_documents(self, texts: list[str]) -> list[list[float]]:
"""Embed search docs in batches of 10."""
# use doc embedding cache or store if not exists
text_embeddings = [None for _ in range(len(texts))]
embedding_queue_indices = []
for i, text in enumerate(texts):
hash = helper.generate_text_hash(text)
embedding = (
db.session.query(Embedding)
.filter_by(
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
)
.first()
)
if embedding:
text_embeddings[i] = embedding.get_embedding()
else:
embedding_queue_indices.append(i)
if embedding_queue_indices:
embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
embedding_queue_embeddings = []
try:
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
model_schema = model_type_instance.get_model_schema(
self._model_instance.model, self._model_instance.credentials
)
max_chunks = (
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
else 1
)
for i in range(0, len(embedding_queue_texts), max_chunks):
batch_texts = embedding_queue_texts[i : i + max_chunks]
embedding_result = self._model_instance.invoke_text_embedding(
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
)
for vector in embedding_result.embeddings:
try:
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
# stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
if np.isnan(normalized_embedding).any():
# for issue #11827 float values are not json compliant
logger.warning(f"Normalized embedding is nan: {normalized_embedding}")
continue
embedding_queue_embeddings.append(normalized_embedding)
except IntegrityError:
db.session.rollback()
except Exception as e:
logging.exception("Failed transform embedding")
cache_embeddings = []
try:
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
text_embeddings[i] = embedding
hash = helper.generate_text_hash(texts[i])
if hash not in cache_embeddings:
embedding_cache = Embedding(
model_name=self._model_instance.model,
hash=hash,
provider_name=self._model_instance.provider,
)
embedding_cache.set_embedding(embedding)
db.session.add(embedding_cache)
cache_embeddings.append(hash)
db.session.commit()
except IntegrityError:
db.session.rollback()
except Exception as ex:
db.session.rollback()
logger.exception("Failed to embed documents: %s")
raise ex
return text_embeddings
def embed_query(self, text: str) -> list[float]:
"""Embed query text."""
# use doc embedding cache or store if not exists
hash = helper.generate_text_hash(text)
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
embedding = redis_client.get(embedding_cache_key)
if embedding:
redis_client.expire(embedding_cache_key, 600)
decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
return [float(x) for x in decoded_embedding]
try:
embedding_result = self._model_instance.invoke_text_embedding(
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
)
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
if np.isnan(embedding_results).any():
raise ValueError("Normalized embedding is nan please try again")
except Exception as ex:
if dify_config.DEBUG:
logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")
raise ex
try:
# encode embedding to base64
embedding_vector = np.array(embedding_results)
vector_bytes = embedding_vector.tobytes()
# Transform to Base64
encoded_vector = base64.b64encode(vector_bytes)
# Transform to string
encoded_str = encoded_vector.decode("utf-8")
redis_client.setex(embedding_cache_key, 600, encoded_str)
except Exception as ex:
if dify_config.DEBUG:
logging.exception(f"Failed to add embedding to redis for the text '{text[:10]}...({len(text)} chars)'")
raise ex
return embedding_results