From ab71e2fa15d7e754b4e3626f95ad368774476ecd Mon Sep 17 00:00:00 2001 From: Lucas Oliveira <62335616+lucaseduoli@users.noreply.github.com> Date: Tue, 12 Nov 2024 13:31:36 -0300 Subject: [PATCH] fix: upgraded agent tool mode switch ux, fixed icon color on main page, fixed pagination ui on main page (#4501) * Added bg background for icon on Agent * Changed system prompt description * Added toggle to node toolbar for tool mode * Removed copy from node toolbar * Fixed node last output border * Removed beta tag from agent * remove text foreground from grid * updated paginator style * Fixed pagination element disposition on main page * Fixed node icon * Removed storeComponent from pagination * removed storeComponent from paginator type * Fixed canvas dots color * Changed pagination design * fixed gap * Fix minimized state on components that have a custom icon * Fixed exibition of flow running state to not make the header jump * Fixed starter flows --- .../base/langflow/components/agents/agent.py | 2 +- .../langchain_utilities/tool_calling.py | 2 +- .../starter_projects/Agent Flow.json | 16 +- .../Basic Prompting (Hello, World).json | 4 +- .../starter_projects/Blog Writer.json | 4 +- .../starter_projects/Complex Agent.json | 20 +-- .../starter_projects/Document QA.json | 4 +- .../starter_projects/Hierarchical Agent.json | 8 +- .../starter_projects/Memory Chatbot.json | 4 +- .../starter_projects/Sequential Agent.json | 4 +- .../Travel Planning Agents.json | 4 +- .../starter_projects/Vector Store RAG.json | 8 +- .../components/NodeOutputfield/index.tsx | 2 +- .../GenericNode/components/nodeIcon/index.tsx | 37 +++-- .../src/CustomNodes/GenericNode/index.tsx | 5 + .../components/FlowMenu/index.tsx | 7 +- .../components/appHeaderComponent/index.tsx | 2 +- .../src/components/pageLayout/index.tsx | 4 +- .../components/paginatorComponent/index.tsx | 153 ++++++++---------- src/frontend/src/components/ui/button.tsx | 5 +- src/frontend/src/components/ui/select.tsx | 4 +- src/frontend/src/components/ui/switch.tsx | 4 +- .../src/pages/DashboardWrapperPage/index.tsx | 4 +- .../components/nodeToolbarComponent/index.tsx | 37 ++--- .../pages/MainPage/components/grid/index.tsx | 2 +- .../componentsComponent/index.tsx | 1 - .../pages/MainPage/pages/homePage/index.tsx | 138 ++++++++-------- .../src/pages/MainPage/pages/index.tsx | 6 +- src/frontend/src/pages/SettingsPage/index.tsx | 2 +- src/frontend/src/pages/StorePage/index.tsx | 1 - src/frontend/src/style/applies.css | 4 +- src/frontend/src/style/index.css | 5 +- src/frontend/src/types/components/index.ts | 2 +- src/frontend/src/utils/styleUtils.ts | 3 + 34 files changed, 244 insertions(+), 264 deletions(-) diff --git a/src/backend/base/langflow/components/agents/agent.py b/src/backend/base/langflow/components/agents/agent.py index 83a657679c7a..8f991fb0267b 100644 --- a/src/backend/base/langflow/components/agents/agent.py +++ b/src/backend/base/langflow/components/agents/agent.py @@ -19,7 +19,7 @@ class AgentComponent(ToolCallingAgentComponent): display_name: str = "Agent" description: str = "Define the agent's instructions, then enter a task to complete using tools." icon = "bot" - beta = True + beta = False name = "Agent" memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs] diff --git a/src/backend/base/langflow/components/langchain_utilities/tool_calling.py b/src/backend/base/langflow/components/langchain_utilities/tool_calling.py index f2c16e66a68f..1f16bbaad83d 100644 --- a/src/backend/base/langflow/components/langchain_utilities/tool_calling.py +++ b/src/backend/base/langflow/components/langchain_utilities/tool_calling.py @@ -25,7 +25,7 @@ class ToolCallingAgentComponent(LCToolsAgentComponent): MessageTextInput( name="system_prompt", display_name="System Prompt", - info="Initial instructions and context provided to guide the agent's behavior.", + info="System prompt to guide the agent's behavior.", value="You are a helpful assistant that can use tools to answer questions and perform tasks.", ), DataInput( diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Agent Flow.json b/src/backend/base/langflow/initial_setup/starter_projects/Agent Flow.json index 27c223d014ce..7c4c6308fe1f 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Agent Flow.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Agent Flow.json @@ -931,7 +931,7 @@ "base_classes": [ "Message" ], - "beta": true, + "beta": false, "category": "agents", "conditional_paths": [], "custom_fields": {}, @@ -1033,7 +1033,7 @@ "combobox": false, "display_name": "Model Provider", "dynamic": false, - "info": "", + "info": "The provider of the language model that the agent will use to generate responses.", "input_types": [], "name": "agent_llm", "options": [ @@ -1089,14 +1089,14 @@ "show": true, "title_case": false, "type": "code", - "value": "from langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.models.model_input_constants import ALL_PROVIDER_FIELDS, MODEL_PROVIDERS_DICT\nfrom langflow.components.helpers import CurrentDateComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.components.memories.memory import MemoryComponent\nfrom langflow.io import BoolInput, DropdownInput, MultilineInput, Output\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n icon = \"bot\"\n beta = True\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n ),\n *MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"],\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n *LCToolsAgentComponent._base_inputs,\n *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Add tool Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [Output(name=\"response\", display_name=\"Response\", method=\"message_response\")]\n\n async def message_response(self) -> Message:\n llm_model = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected\"\n raise ValueError(msg)\n self.chat_history = self.get_memory_data()\n\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n # Convert CurrentDateComponent to a StructuredTool\n current_date_tool = CurrentDateComponent().to_toolkit()[0]\n if isinstance(current_date_tool, StructuredTool):\n self.tools.append(current_date_tool)\n else:\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise ValueError(msg)\n\n if not self.tools:\n msg = \"Tools are required to run the agent.\"\n raise ValueError(msg)\n self.set(\n llm=llm_model,\n tools=self.tools,\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n return await self.run_agent(agent)\n\n def get_memory_data(self):\n memory_kwargs = {\n component_input.name: getattr(self, f\"{component_input.name}\") for component_input in self.memory_inputs\n }\n\n return MemoryComponent().set(**memory_kwargs).retrieve_messages()\n\n def get_llm(self):\n if isinstance(self.agent_llm, str):\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n return self._build_llm_model(component_class, inputs, prefix)\n except Exception as e:\n msg = f\"Error building {self.agent_llm} language model\"\n raise ValueError(msg) from e\n return self.agent_llm\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {input_.name: getattr(self, f\"{prefix}{input_.name}\") for input_ in inputs}\n return component.set(**model_kwargs).build_model()\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n def update_build_config(self, build_config: dotdict, field_value: str, field_name: str | None = None) -> dotdict:\n if field_name == \"agent_llm\":\n # Define provider configurations as (fields_to_add, fields_to_delete)\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n\n return build_config\n" + "value": "from langchain_core.tools import StructuredTool\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.models.model_input_constants import ALL_PROVIDER_FIELDS, MODEL_PROVIDERS_DICT\nfrom langflow.components.helpers import CurrentDateComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.components.memories.memory import MemoryComponent\nfrom langflow.io import BoolInput, DropdownInput, MultilineInput, Output\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n ),\n *MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"],\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n *LCToolsAgentComponent._base_inputs,\n *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Add tool Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [Output(name=\"response\", display_name=\"Response\", method=\"message_response\")]\n\n async def message_response(self) -> Message:\n llm_model = self.get_llm()\n if llm_model is None:\n msg = \"No language model selected\"\n raise ValueError(msg)\n self.chat_history = self.get_memory_data()\n\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n # Convert CurrentDateComponent to a StructuredTool\n current_date_tool = CurrentDateComponent().to_toolkit()[0]\n if isinstance(current_date_tool, StructuredTool):\n self.tools.append(current_date_tool)\n else:\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise ValueError(msg)\n\n if not self.tools:\n msg = \"Tools are required to run the agent.\"\n raise ValueError(msg)\n self.set(\n llm=llm_model,\n tools=self.tools,\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n return await self.run_agent(agent)\n\n def get_memory_data(self):\n memory_kwargs = {\n component_input.name: getattr(self, f\"{component_input.name}\") for component_input in self.memory_inputs\n }\n\n return MemoryComponent().set(**memory_kwargs).retrieve_messages()\n\n def get_llm(self):\n if isinstance(self.agent_llm, str):\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n return self._build_llm_model(component_class, inputs, prefix)\n except Exception as e:\n msg = f\"Error building {self.agent_llm} language model\"\n raise ValueError(msg) from e\n return self.agent_llm\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {input_.name: getattr(self, f\"{prefix}{input_.name}\") for input_ in inputs}\n return component.set(**model_kwargs).build_model()\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n def update_build_config(self, build_config: dotdict, field_value: str, field_name: str | None = None) -> dotdict:\n if field_name == \"agent_llm\":\n # Define provider configurations as (fields_to_add, fields_to_delete)\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS_DICT.keys()), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n\n return build_config\n" }, "handle_parsing_errors": { "_input_type": "BoolInput", "advanced": true, "display_name": "Handle Parse Errors", "dynamic": false, - "info": "", + "info": "Should the Agent fix errors when reading user input for better processing?", "list": false, "name": "handle_parsing_errors", "placeholder": "", @@ -1149,7 +1149,7 @@ "advanced": true, "display_name": "Max Iterations", "dynamic": false, - "info": "", + "info": "The maximum number of attempts the agent can make to complete its task before it stops.", "list": false, "name": "max_iterations", "placeholder": "", @@ -1206,7 +1206,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -1414,7 +1414,7 @@ "advanced": false, "display_name": "Agent Instructions", "dynamic": false, - "info": "Initial instructions and context provided to guide the agent's behavior.", + "info": "System Prompt: Initial instructions and context provided to guide the agent's behavior.", "input_types": [ "Message" ], @@ -1474,7 +1474,7 @@ "advanced": false, "display_name": "Tools", "dynamic": false, - "info": "", + "info": "These are the tools that the agent can use to help with tasks.", "input_types": [ "Tool", "BaseTool", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Basic Prompting (Hello, World).json b/src/backend/base/langflow/initial_setup/starter_projects/Basic Prompting (Hello, World).json index 416beff6db07..b3b1026ae8d1 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Basic Prompting (Hello, World).json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Basic Prompting (Hello, World).json @@ -843,7 +843,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -899,7 +899,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Blog Writer.json b/src/backend/base/langflow/initial_setup/starter_projects/Blog Writer.json index 16d5df65589f..6a1b4ef06822 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Blog Writer.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Blog Writer.json @@ -1004,7 +1004,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -1060,7 +1060,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Complex Agent.json b/src/backend/base/langflow/initial_setup/starter_projects/Complex Agent.json index c84c4fd38ddd..ad35aad5ddbd 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Complex Agent.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Complex Agent.json @@ -944,7 +944,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -1000,7 +1000,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -2165,7 +2165,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -2221,7 +2221,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -2988,7 +2988,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -3044,7 +3044,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -3425,7 +3425,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -3481,7 +3481,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -3886,7 +3886,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -3942,7 +3942,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Document QA.json b/src/backend/base/langflow/initial_setup/starter_projects/Document QA.json index 18f5e146988c..35bffaac9cf4 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Document QA.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Document QA.json @@ -921,7 +921,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -977,7 +977,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Hierarchical Agent.json b/src/backend/base/langflow/initial_setup/starter_projects/Hierarchical Agent.json index 4b07f1b110fd..02d9b231beb1 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Hierarchical Agent.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Hierarchical Agent.json @@ -643,7 +643,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -699,7 +699,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", @@ -1884,7 +1884,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -1940,7 +1940,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Memory Chatbot.json b/src/backend/base/langflow/initial_setup/starter_projects/Memory Chatbot.json index 2465f757047b..c730b4ab7c68 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Memory Chatbot.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Memory Chatbot.json @@ -636,7 +636,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -692,7 +692,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Sequential Agent.json b/src/backend/base/langflow/initial_setup/starter_projects/Sequential Agent.json index 58c829bdc3c4..03ab727509ec 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Sequential Agent.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Sequential Agent.json @@ -657,7 +657,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -713,7 +713,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Travel Planning Agents.json b/src/backend/base/langflow/initial_setup/starter_projects/Travel Planning Agents.json index 23194ff072e1..6edba343c70d 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Travel Planning Agents.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Travel Planning Agents.json @@ -1024,7 +1024,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "_input_type": "MessageInput", @@ -1090,7 +1090,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/backend/base/langflow/initial_setup/starter_projects/Vector Store RAG.json b/src/backend/base/langflow/initial_setup/starter_projects/Vector Store RAG.json index 6c4dc565852c..60dca9091c86 100644 --- a/src/backend/base/langflow/initial_setup/starter_projects/Vector Store RAG.json +++ b/src/backend/base/langflow/initial_setup/starter_projects/Vector Store RAG.json @@ -718,7 +718,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import os\n\nimport orjson\nfrom astrapy.admin import parse_api_endpoint\n\nfrom langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store\nfrom langflow.helpers import docs_to_data\nfrom langflow.inputs import DictInput, FloatInput, MessageTextInput\nfrom langflow.io import (\n BoolInput,\n DataInput,\n DropdownInput,\n HandleInput,\n IntInput,\n MultilineInput,\n SecretStrInput,\n StrInput,\n)\nfrom langflow.schema import Data\n\n\nclass AstraVectorStoreComponent(LCVectorStoreComponent):\n display_name: str = \"Astra DB\"\n description: str = \"Implementation of Vector Store using Astra DB with search capabilities\"\n documentation: str = \"https://docs.langflow.org/starter-projects-vector-store-rag\"\n name = \"AstraDB\"\n icon: str = \"AstraDB\"\n\n VECTORIZE_PROVIDERS_MAPPING = {\n \"Azure OpenAI\": [\"azureOpenAI\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Hugging Face - Dedicated\": [\"huggingfaceDedicated\", [\"endpoint-defined-model\"]],\n \"Hugging Face - Serverless\": [\n \"huggingface\",\n [\n \"sentence-transformers/all-MiniLM-L6-v2\",\n \"intfloat/multilingual-e5-large\",\n \"intfloat/multilingual-e5-large-instruct\",\n \"BAAI/bge-small-en-v1.5\",\n \"BAAI/bge-base-en-v1.5\",\n \"BAAI/bge-large-en-v1.5\",\n ],\n ],\n \"Jina AI\": [\n \"jinaAI\",\n [\n \"jina-embeddings-v2-base-en\",\n \"jina-embeddings-v2-base-de\",\n \"jina-embeddings-v2-base-es\",\n \"jina-embeddings-v2-base-code\",\n \"jina-embeddings-v2-base-zh\",\n ],\n ],\n \"Mistral AI\": [\"mistral\", [\"mistral-embed\"]],\n \"NVIDIA\": [\"nvidia\", [\"NV-Embed-QA\"]],\n \"OpenAI\": [\"openai\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Upstage\": [\"upstageAI\", [\"solar-embedding-1-large\"]],\n \"Voyage AI\": [\n \"voyageAI\",\n [\"voyage-large-2-instruct\", \"voyage-law-2\", \"voyage-code-2\", \"voyage-large-2\", \"voyage-2\"],\n ],\n }\n\n inputs = [\n SecretStrInput(\n name=\"token\",\n display_name=\"Astra DB Application Token\",\n info=\"Authentication token for accessing Astra DB.\",\n value=\"ASTRA_DB_APPLICATION_TOKEN\",\n required=True,\n advanced=os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\",\n ),\n SecretStrInput(\n name=\"api_endpoint\",\n display_name=\"Database\" if os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\" else \"API Endpoint\",\n info=\"API endpoint URL for the Astra DB service.\",\n value=\"ASTRA_DB_API_ENDPOINT\",\n required=True,\n ),\n StrInput(\n name=\"collection_name\",\n display_name=\"Collection Name\",\n info=\"The name of the collection within Astra DB where the vectors will be stored.\",\n required=True,\n ),\n MultilineInput(\n name=\"search_input\",\n display_name=\"Search Input\",\n ),\n DataInput(\n name=\"ingest_data\",\n display_name=\"Ingest Data\",\n is_list=True,\n ),\n StrInput(\n name=\"namespace\",\n display_name=\"Namespace\",\n info=\"Optional namespace within Astra DB to use for the collection.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"embedding_service\",\n display_name=\"Embedding Model or Astra Vectorize\",\n info=\"Determines whether to use Astra Vectorize for the collection.\",\n options=[\"Embedding Model\", \"Astra Vectorize\"],\n real_time_refresh=True,\n value=\"Embedding Model\",\n ),\n HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ),\n DropdownInput(\n name=\"metric\",\n display_name=\"Metric\",\n info=\"Optional distance metric for vector comparisons in the vector store.\",\n options=[\"cosine\", \"dot_product\", \"euclidean\"],\n value=\"cosine\",\n advanced=True,\n ),\n IntInput(\n name=\"batch_size\",\n display_name=\"Batch Size\",\n info=\"Optional number of data to process in a single batch.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_batch_concurrency\",\n display_name=\"Bulk Insert Batch Concurrency\",\n info=\"Optional concurrency level for bulk insert operations.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_overwrite_concurrency\",\n display_name=\"Bulk Insert Overwrite Concurrency\",\n info=\"Optional concurrency level for bulk insert operations that overwrite existing data.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_delete_concurrency\",\n display_name=\"Bulk Delete Concurrency\",\n info=\"Optional concurrency level for bulk delete operations.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"setup_mode\",\n display_name=\"Setup Mode\",\n info=\"Configuration mode for setting up the vector store, with options like 'Sync' or 'Off'.\",\n options=[\"Sync\", \"Off\"],\n advanced=True,\n value=\"Sync\",\n ),\n BoolInput(\n name=\"pre_delete_collection\",\n display_name=\"Pre Delete Collection\",\n info=\"Boolean flag to determine whether to delete the collection before creating a new one.\",\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_include\",\n display_name=\"Metadata Indexing Include\",\n info=\"Optional list of metadata fields to include in the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_exclude\",\n display_name=\"Metadata Indexing Exclude\",\n info=\"Optional list of metadata fields to exclude from the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"collection_indexing_policy\",\n display_name=\"Collection Indexing Policy\",\n info='Optional JSON string for the \"indexing\" field of the collection. '\n \"See https://docs.datastax.com/en/astra-db-serverless/api-reference/collections.html#the-indexing-option\",\n advanced=True,\n ),\n IntInput(\n name=\"number_of_results\",\n display_name=\"Number of Results\",\n info=\"Number of results to return.\",\n advanced=True,\n value=4,\n ),\n DropdownInput(\n name=\"search_type\",\n display_name=\"Search Type\",\n info=\"Search type to use\",\n options=[\"Similarity\", \"Similarity with score threshold\", \"MMR (Max Marginal Relevance)\"],\n value=\"Similarity\",\n advanced=True,\n ),\n FloatInput(\n name=\"search_score_threshold\",\n display_name=\"Search Score Threshold\",\n info=\"Minimum similarity score threshold for search results. \"\n \"(when using 'Similarity with score threshold')\",\n value=0,\n advanced=True,\n ),\n DictInput(\n name=\"search_filter\",\n display_name=\"Search Metadata Filter\",\n info=\"Optional dictionary of filters to apply to the search query.\",\n advanced=True,\n is_list=True,\n ),\n ]\n\n def insert_in_dict(self, build_config, field_name, new_parameters):\n # Insert the new key-value pair after the found key\n for new_field_name, new_parameter in new_parameters.items():\n # Get all the items as a list of tuples (key, value)\n items = list(build_config.items())\n\n # Find the index of the key to insert after\n idx = len(items)\n for i, (key, _) in enumerate(items):\n if key == field_name:\n idx = i + 1\n break\n\n items.insert(idx, (new_field_name, new_parameter))\n\n # Clear the original dictionary and update with the modified items\n build_config.clear()\n build_config.update(items)\n\n return build_config\n\n def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):\n if field_name == \"embedding_service\":\n if field_value == \"Astra Vectorize\":\n for field in [\"embedding\"]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = DropdownInput(\n name=\"provider\",\n display_name=\"Vectorize Provider\",\n options=self.VECTORIZE_PROVIDERS_MAPPING.keys(),\n value=\"\",\n required=True,\n real_time_refresh=True,\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"provider\": new_parameter})\n else:\n for field in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"embedding\": new_parameter})\n\n elif field_name == \"provider\":\n for field in [\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n model_options = self.VECTORIZE_PROVIDERS_MAPPING[field_value][1]\n\n new_parameter_0 = DropdownInput(\n name=\"z_00_model_name\",\n display_name=\"Model Name\",\n info=\"The embedding model to use for the selected provider. Each provider has a different set of \"\n \"models available (full list at \"\n \"https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\\n\\n\"\n f\"{', '.join(model_options)}\",\n options=model_options,\n placeholder=\"Select a model\",\n value=model_options[0],\n required=True,\n ).to_dict()\n\n new_parameter_1 = DictInput(\n name=\"z_01_model_parameters\",\n display_name=\"Model Parameters\",\n is_list=True,\n ).to_dict()\n\n new_parameter_2 = MessageTextInput(\n name=\"z_02_api_key_name\",\n display_name=\"API Key name\",\n info=\"The name of the embeddings provider API key stored on Astra. \"\n \"If set, it will override the 'ProviderKey' in the authentication parameters.\",\n ).to_dict()\n\n new_parameter_3 = SecretStrInput(\n name=\"z_03_provider_api_key\",\n display_name=\"Provider API Key\",\n info=\"An alternative to the Astra Authentication that passes an API key for the provider \"\n \"with each request to Astra DB. \"\n \"This may be used when Vectorize is configured for the collection, \"\n \"but no corresponding provider secret is stored within Astra's key management system.\",\n ).to_dict()\n\n new_parameter_4 = DictInput(\n name=\"z_04_authentication\",\n display_name=\"Authentication parameters\",\n is_list=True,\n ).to_dict()\n\n self.insert_in_dict(\n build_config,\n \"provider\",\n {\n \"z_00_model_name\": new_parameter_0,\n \"z_01_model_parameters\": new_parameter_1,\n \"z_02_api_key_name\": new_parameter_2,\n \"z_03_provider_api_key\": new_parameter_3,\n \"z_04_authentication\": new_parameter_4,\n },\n )\n\n return build_config\n\n def build_vectorize_options(self, **kwargs):\n for attribute in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if not hasattr(self, attribute):\n setattr(self, attribute, None)\n\n # Fetch values from kwargs if any self.* attributes are None\n provider_value = self.VECTORIZE_PROVIDERS_MAPPING.get(self.provider, [None])[0] or kwargs.get(\"provider\")\n authentication = {**(self.z_04_authentication or kwargs.get(\"z_04_authentication\", {}))}\n\n api_key_name = self.z_02_api_key_name or kwargs.get(\"z_02_api_key_name\")\n provider_key = self.z_03_provider_api_key or kwargs.get(\"z_03_provider_api_key\")\n if api_key_name:\n authentication[\"providerKey\"] = api_key_name\n\n return {\n # must match astrapy.info.CollectionVectorServiceOptions\n \"collection_vector_service_options\": {\n \"provider\": provider_value,\n \"modelName\": self.z_00_model_name or kwargs.get(\"z_00_model_name\"),\n \"authentication\": authentication,\n \"parameters\": self.z_01_model_parameters or kwargs.get(\"z_01_model_parameters\", {}),\n },\n \"collection_embedding_api_key\": provider_key,\n }\n\n @check_cached_vector_store\n def build_vector_store(self, vectorize_options=None):\n try:\n from langchain_astradb import AstraDBVectorStore\n from langchain_astradb.utils.astradb import SetupMode\n except ImportError as e:\n msg = (\n \"Could not import langchain Astra DB integration package. \"\n \"Please install it with `pip install langchain-astradb`.\"\n )\n raise ImportError(msg) from e\n\n try:\n if not self.setup_mode:\n self.setup_mode = self._inputs[\"setup_mode\"].options[0]\n\n setup_mode_value = SetupMode[self.setup_mode.upper()]\n except KeyError as e:\n msg = f\"Invalid setup mode: {self.setup_mode}\"\n raise ValueError(msg) from e\n\n if self.embedding_service == \"Embedding Model\":\n embedding_dict = {\"embedding\": self.embedding}\n else:\n from astrapy.info import CollectionVectorServiceOptions\n\n dict_options = vectorize_options or self.build_vectorize_options()\n dict_options[\"authentication\"] = {\n k: v for k, v in dict_options.get(\"authentication\", {}).items() if k and v\n }\n dict_options[\"parameters\"] = {k: v for k, v in dict_options.get(\"parameters\", {}).items() if k and v}\n\n embedding_dict = {\n \"collection_vector_service_options\": CollectionVectorServiceOptions.from_dict(\n dict_options.get(\"collection_vector_service_options\", {})\n ),\n \"collection_embedding_api_key\": dict_options.get(\"collection_embedding_api_key\"),\n }\n try:\n vector_store = AstraDBVectorStore(\n collection_name=self.collection_name,\n token=self.token,\n api_endpoint=self.api_endpoint,\n namespace=self.namespace or None,\n environment=parse_api_endpoint(self.api_endpoint).environment if self.api_endpoint else None,\n metric=self.metric or None,\n batch_size=self.batch_size or None,\n bulk_insert_batch_concurrency=self.bulk_insert_batch_concurrency or None,\n bulk_insert_overwrite_concurrency=self.bulk_insert_overwrite_concurrency or None,\n bulk_delete_concurrency=self.bulk_delete_concurrency or None,\n setup_mode=setup_mode_value,\n pre_delete_collection=self.pre_delete_collection,\n metadata_indexing_include=[s for s in self.metadata_indexing_include if s] or None,\n metadata_indexing_exclude=[s for s in self.metadata_indexing_exclude if s] or None,\n collection_indexing_policy=orjson.dumps(self.collection_indexing_policy)\n if self.collection_indexing_policy\n else None,\n **embedding_dict,\n )\n except Exception as e:\n msg = f\"Error initializing AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self._add_documents_to_vector_store(vector_store)\n\n return vector_store\n\n def _add_documents_to_vector_store(self, vector_store) -> None:\n documents = []\n for _input in self.ingest_data or []:\n if isinstance(_input, Data):\n documents.append(_input.to_lc_document())\n else:\n msg = \"Vector Store Inputs must be Data objects.\"\n raise TypeError(msg)\n\n if documents:\n self.log(f\"Adding {len(documents)} documents to the Vector Store.\")\n try:\n vector_store.add_documents(documents)\n except Exception as e:\n msg = f\"Error adding documents to AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n else:\n self.log(\"No documents to add to the Vector Store.\")\n\n def _map_search_type(self) -> str:\n if self.search_type == \"Similarity with score threshold\":\n return \"similarity_score_threshold\"\n if self.search_type == \"MMR (Max Marginal Relevance)\":\n return \"mmr\"\n return \"similarity\"\n\n def _build_search_args(self):\n args = {\n \"k\": self.number_of_results,\n \"score_threshold\": self.search_score_threshold,\n }\n\n if self.search_filter:\n clean_filter = {k: v for k, v in self.search_filter.items() if k and v}\n if len(clean_filter) > 0:\n args[\"filter\"] = clean_filter\n return args\n\n def search_documents(self, vector_store=None) -> list[Data]:\n if not vector_store:\n vector_store = self.build_vector_store()\n\n self.log(f\"Search input: {self.search_input}\")\n self.log(f\"Search type: {self.search_type}\")\n self.log(f\"Number of results: {self.number_of_results}\")\n\n if self.search_input and isinstance(self.search_input, str) and self.search_input.strip():\n try:\n search_type = self._map_search_type()\n search_args = self._build_search_args()\n\n docs = vector_store.search(query=self.search_input, search_type=search_type, **search_args)\n except Exception as e:\n msg = f\"Error performing search in AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self.log(f\"Retrieved documents: {len(docs)}\")\n\n data = docs_to_data(docs)\n self.log(f\"Converted documents to data: {len(data)}\")\n self.status = data\n return data\n self.log(\"No search input provided. Skipping search.\")\n return []\n\n def get_retriever_kwargs(self):\n search_args = self._build_search_args()\n return {\n \"search_type\": self._map_search_type(),\n \"search_kwargs\": search_args,\n }\n" + "value": "import os\n\nimport orjson\nfrom astrapy.admin import parse_api_endpoint\n\nfrom langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store\nfrom langflow.helpers import docs_to_data\nfrom langflow.inputs import DictInput, FloatInput, MessageTextInput\nfrom langflow.io import (\n BoolInput,\n DataInput,\n DropdownInput,\n HandleInput,\n IntInput,\n MultilineInput,\n SecretStrInput,\n StrInput,\n)\nfrom langflow.schema import Data\n\n\nclass AstraVectorStoreComponent(LCVectorStoreComponent):\n display_name: str = \"Astra DB\"\n description: str = \"Implementation of Vector Store using Astra DB with search capabilities\"\n documentation: str = \"https://docs.langflow.org/starter-projects-vector-store-rag\"\n name = \"AstraDB\"\n icon: str = \"AstraDB\"\n\n VECTORIZE_PROVIDERS_MAPPING = {\n \"Azure OpenAI\": [\"azureOpenAI\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Hugging Face - Dedicated\": [\"huggingfaceDedicated\", [\"endpoint-defined-model\"]],\n \"Hugging Face - Serverless\": [\n \"huggingface\",\n [\n \"sentence-transformers/all-MiniLM-L6-v2\",\n \"intfloat/multilingual-e5-large\",\n \"intfloat/multilingual-e5-large-instruct\",\n \"BAAI/bge-small-en-v1.5\",\n \"BAAI/bge-base-en-v1.5\",\n \"BAAI/bge-large-en-v1.5\",\n ],\n ],\n \"Jina AI\": [\n \"jinaAI\",\n [\n \"jina-embeddings-v2-base-en\",\n \"jina-embeddings-v2-base-de\",\n \"jina-embeddings-v2-base-es\",\n \"jina-embeddings-v2-base-code\",\n \"jina-embeddings-v2-base-zh\",\n ],\n ],\n \"Mistral AI\": [\"mistral\", [\"mistral-embed\"]],\n \"NVIDIA\": [\"nvidia\", [\"NV-Embed-QA\"]],\n \"OpenAI\": [\"openai\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Upstage\": [\"upstageAI\", [\"solar-embedding-1-large\"]],\n \"Voyage AI\": [\n \"voyageAI\",\n [\"voyage-large-2-instruct\", \"voyage-law-2\", \"voyage-code-2\", \"voyage-large-2\", \"voyage-2\"],\n ],\n }\n\n inputs = [\n SecretStrInput(\n name=\"token\",\n display_name=\"Astra DB Application Token\",\n info=\"Authentication token for accessing Astra DB.\",\n value=\"ASTRA_DB_APPLICATION_TOKEN\",\n required=True,\n advanced=os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\",\n ),\n SecretStrInput(\n name=\"api_endpoint\",\n display_name=\"Database\" if os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\" else \"API Endpoint\",\n info=\"API endpoint URL for the Astra DB service.\",\n value=\"ASTRA_DB_API_ENDPOINT\",\n required=True,\n ),\n StrInput(\n name=\"collection_name\",\n display_name=\"Collection Name\",\n info=\"The name of the collection within Astra DB where the vectors will be stored.\",\n required=True,\n ),\n MultilineInput(\n name=\"search_input\",\n display_name=\"Search Input\",\n ),\n DataInput(\n name=\"ingest_data\",\n display_name=\"Ingest Data\",\n is_list=True,\n ),\n StrInput(\n name=\"namespace\",\n display_name=\"Namespace\",\n info=\"Optional namespace within Astra DB to use for the collection.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"embedding_service\",\n display_name=\"Embedding Model or Astra Vectorize\",\n info=\"Determines whether to use Astra Vectorize for the collection.\",\n options=[\"Embedding Model\", \"Astra Vectorize\"],\n real_time_refresh=True,\n value=\"Embedding Model\",\n ),\n HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ),\n DropdownInput(\n name=\"metric\",\n display_name=\"Metric\",\n info=\"Optional distance metric for vector comparisons in the vector store.\",\n options=[\"cosine\", \"dot_product\", \"euclidean\"],\n value=\"cosine\",\n advanced=True,\n ),\n IntInput(\n name=\"batch_size\",\n display_name=\"Batch Size\",\n info=\"Optional number of data to process in a single batch.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_batch_concurrency\",\n display_name=\"Bulk Insert Batch Concurrency\",\n info=\"Optional concurrency level for bulk insert operations.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_overwrite_concurrency\",\n display_name=\"Bulk Insert Overwrite Concurrency\",\n info=\"Optional concurrency level for bulk insert operations that overwrite existing data.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_delete_concurrency\",\n display_name=\"Bulk Delete Concurrency\",\n info=\"Optional concurrency level for bulk delete operations.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"setup_mode\",\n display_name=\"Setup Mode\",\n info=\"Configuration mode for setting up the vector store, with options like 'Sync' or 'Off'.\",\n options=[\"Sync\", \"Off\"],\n advanced=True,\n value=\"Sync\",\n ),\n BoolInput(\n name=\"pre_delete_collection\",\n display_name=\"Pre Delete Collection\",\n info=\"Boolean flag to determine whether to delete the collection before creating a new one.\",\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_include\",\n display_name=\"Metadata Indexing Include\",\n info=\"Optional list of metadata fields to include in the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_exclude\",\n display_name=\"Metadata Indexing Exclude\",\n info=\"Optional list of metadata fields to exclude from the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"collection_indexing_policy\",\n display_name=\"Collection Indexing Policy\",\n info='Optional JSON string for the \"indexing\" field of the collection. '\n \"See https://docs.datastax.com/en/astra-db-serverless/api-reference/collections.html#the-indexing-option\",\n advanced=True,\n ),\n IntInput(\n name=\"number_of_results\",\n display_name=\"Number of Results\",\n info=\"Number of results to return.\",\n advanced=True,\n value=4,\n ),\n DropdownInput(\n name=\"search_type\",\n display_name=\"Search Type\",\n info=\"Search type to use\",\n options=[\"Similarity\", \"Similarity with score threshold\", \"MMR (Max Marginal Relevance)\"],\n value=\"Similarity\",\n advanced=True,\n ),\n FloatInput(\n name=\"search_score_threshold\",\n display_name=\"Search Score Threshold\",\n info=\"Minimum similarity score threshold for search results. \"\n \"(when using 'Similarity with score threshold')\",\n value=0,\n advanced=True,\n ),\n DictInput(\n name=\"search_filter\",\n display_name=\"Search Metadata Filter\",\n info=\"Optional dictionary of filters to apply to the search query.\",\n advanced=True,\n is_list=True,\n ),\n ]\n\n def insert_in_dict(self, build_config, field_name, new_parameters):\n # Insert the new key-value pair after the found key\n for new_field_name, new_parameter in new_parameters.items():\n # Get all the items as a list of tuples (key, value)\n items = list(build_config.items())\n\n # Find the index of the key to insert after\n idx = len(items)\n for i, (key, _) in enumerate(items):\n if key == field_name:\n idx = i + 1\n break\n\n items.insert(idx, (new_field_name, new_parameter))\n\n # Clear the original dictionary and update with the modified items\n build_config.clear()\n build_config.update(items)\n\n return build_config\n\n def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):\n if field_name == \"embedding_service\":\n if field_value == \"Astra Vectorize\":\n for field in [\"embedding\"]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = DropdownInput(\n name=\"provider\",\n display_name=\"Vectorize Provider\",\n options=self.VECTORIZE_PROVIDERS_MAPPING.keys(),\n value=\"\",\n required=True,\n real_time_refresh=True,\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"provider\": new_parameter})\n else:\n for field in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"embedding\": new_parameter})\n\n elif field_name == \"provider\":\n for field in [\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n model_options = self.VECTORIZE_PROVIDERS_MAPPING[field_value][1]\n\n new_parameter_0 = DropdownInput(\n name=\"z_00_model_name\",\n display_name=\"Model Name\",\n info=\"The embedding model to use for the selected provider. Each provider has a different set of \"\n \"models available (full list at \"\n \"https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\\n\\n\"\n f\"{', '.join(model_options)}\",\n options=model_options,\n placeholder=\"Select a model\",\n value=model_options[0],\n required=True,\n ).to_dict()\n\n new_parameter_1 = DictInput(\n name=\"z_01_model_parameters\",\n display_name=\"Model Parameters\",\n is_list=True,\n ).to_dict()\n\n new_parameter_2 = MessageTextInput(\n name=\"z_02_api_key_name\",\n display_name=\"API Key name\",\n info=\"The name of the embeddings provider API key stored on Astra. \"\n \"If set, it will override the 'ProviderKey' in the authentication parameters.\",\n ).to_dict()\n\n new_parameter_3 = SecretStrInput(\n name=\"z_03_provider_api_key\",\n display_name=\"Provider API Key\",\n info=\"An alternative to the Astra Authentication that passes an API key for the provider \"\n \"with each request to Astra DB. \"\n \"This may be used when Vectorize is configured for the collection, \"\n \"but no corresponding provider secret is stored within Astra's key management system.\",\n ).to_dict()\n\n new_parameter_4 = DictInput(\n name=\"z_04_authentication\",\n display_name=\"Authentication parameters\",\n is_list=True,\n ).to_dict()\n\n self.insert_in_dict(\n build_config,\n \"provider\",\n {\n \"z_00_model_name\": new_parameter_0,\n \"z_01_model_parameters\": new_parameter_1,\n \"z_02_api_key_name\": new_parameter_2,\n \"z_03_provider_api_key\": new_parameter_3,\n \"z_04_authentication\": new_parameter_4,\n },\n )\n\n return build_config\n\n def build_vectorize_options(self, **kwargs):\n for attribute in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if not hasattr(self, attribute):\n setattr(self, attribute, None)\n\n # Fetch values from kwargs if any self.* attributes are None\n provider_value = self.VECTORIZE_PROVIDERS_MAPPING.get(self.provider, [None])[0] or kwargs.get(\"provider\")\n model_name = self.z_00_model_name or kwargs.get(\"z_00_model_name\")\n authentication = {**(self.z_04_authentication or kwargs.get(\"z_04_authentication\", {}))}\n parameters = self.z_01_model_parameters or kwargs.get(\"z_01_model_parameters\", {})\n\n # Set the API key name if provided\n api_key_name = self.z_02_api_key_name or kwargs.get(\"z_02_api_key_name\")\n provider_key = self.z_03_provider_api_key or kwargs.get(\"z_03_provider_api_key\")\n if api_key_name:\n authentication[\"providerKey\"] = api_key_name\n\n # Set authentication and parameters to None if no values are provided\n if not authentication:\n authentication = None\n if not parameters:\n parameters = None\n\n return {\n # must match astrapy.info.CollectionVectorServiceOptions\n \"collection_vector_service_options\": {\n \"provider\": provider_value,\n \"modelName\": model_name,\n \"authentication\": authentication,\n \"parameters\": parameters,\n },\n \"collection_embedding_api_key\": provider_key,\n }\n\n @check_cached_vector_store\n def build_vector_store(self, vectorize_options=None):\n try:\n from langchain_astradb import AstraDBVectorStore\n from langchain_astradb.utils.astradb import SetupMode\n except ImportError as e:\n msg = (\n \"Could not import langchain Astra DB integration package. \"\n \"Please install it with `pip install langchain-astradb`.\"\n )\n raise ImportError(msg) from e\n\n try:\n if not self.setup_mode:\n self.setup_mode = self._inputs[\"setup_mode\"].options[0]\n\n setup_mode_value = SetupMode[self.setup_mode.upper()]\n except KeyError as e:\n msg = f\"Invalid setup mode: {self.setup_mode}\"\n raise ValueError(msg) from e\n\n if self.embedding_service == \"Embedding Model\":\n embedding_dict = {\"embedding\": self.embedding}\n else:\n from astrapy.info import CollectionVectorServiceOptions\n\n # Fetch values from kwargs if any self.* attributes are None\n dict_options = vectorize_options or self.build_vectorize_options()\n\n # Set the embedding dictionary\n embedding_dict = {\n \"collection_vector_service_options\": CollectionVectorServiceOptions.from_dict(\n dict_options.get(\"collection_vector_service_options\")\n ),\n \"collection_embedding_api_key\": dict_options.get(\"collection_embedding_api_key\"),\n }\n try:\n vector_store = AstraDBVectorStore(\n collection_name=self.collection_name,\n token=self.token,\n api_endpoint=self.api_endpoint,\n namespace=self.namespace or None,\n environment=parse_api_endpoint(self.api_endpoint).environment if self.api_endpoint else None,\n metric=self.metric or None,\n batch_size=self.batch_size or None,\n bulk_insert_batch_concurrency=self.bulk_insert_batch_concurrency or None,\n bulk_insert_overwrite_concurrency=self.bulk_insert_overwrite_concurrency or None,\n bulk_delete_concurrency=self.bulk_delete_concurrency or None,\n setup_mode=setup_mode_value,\n pre_delete_collection=self.pre_delete_collection,\n metadata_indexing_include=[s for s in self.metadata_indexing_include if s] or None,\n metadata_indexing_exclude=[s for s in self.metadata_indexing_exclude if s] or None,\n collection_indexing_policy=orjson.dumps(self.collection_indexing_policy)\n if self.collection_indexing_policy\n else None,\n **embedding_dict,\n )\n except Exception as e:\n msg = f\"Error initializing AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self._add_documents_to_vector_store(vector_store)\n\n return vector_store\n\n def _add_documents_to_vector_store(self, vector_store) -> None:\n documents = []\n for _input in self.ingest_data or []:\n if isinstance(_input, Data):\n documents.append(_input.to_lc_document())\n else:\n msg = \"Vector Store Inputs must be Data objects.\"\n raise TypeError(msg)\n\n if documents:\n self.log(f\"Adding {len(documents)} documents to the Vector Store.\")\n try:\n vector_store.add_documents(documents)\n except Exception as e:\n msg = f\"Error adding documents to AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n else:\n self.log(\"No documents to add to the Vector Store.\")\n\n def _map_search_type(self) -> str:\n if self.search_type == \"Similarity with score threshold\":\n return \"similarity_score_threshold\"\n if self.search_type == \"MMR (Max Marginal Relevance)\":\n return \"mmr\"\n return \"similarity\"\n\n def _build_search_args(self):\n args = {\n \"k\": self.number_of_results,\n \"score_threshold\": self.search_score_threshold,\n }\n\n if self.search_filter:\n clean_filter = {k: v for k, v in self.search_filter.items() if k and v}\n if len(clean_filter) > 0:\n args[\"filter\"] = clean_filter\n return args\n\n def search_documents(self, vector_store=None) -> list[Data]:\n if not vector_store:\n vector_store = self.build_vector_store()\n\n self.log(f\"Search input: {self.search_input}\")\n self.log(f\"Search type: {self.search_type}\")\n self.log(f\"Number of results: {self.number_of_results}\")\n\n if self.search_input and isinstance(self.search_input, str) and self.search_input.strip():\n try:\n search_type = self._map_search_type()\n search_args = self._build_search_args()\n\n docs = vector_store.search(query=self.search_input, search_type=search_type, **search_args)\n except Exception as e:\n msg = f\"Error performing search in AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self.log(f\"Retrieved documents: {len(docs)}\")\n\n data = docs_to_data(docs)\n self.log(f\"Converted documents to data: {len(data)}\")\n self.status = data\n return data\n self.log(\"No search input provided. Skipping search.\")\n return []\n\n def get_retriever_kwargs(self):\n search_args = self._build_search_args()\n return {\n \"search_type\": self._map_search_type(),\n \"search_kwargs\": search_args,\n }\n" }, "collection_indexing_policy": { "advanced": true, @@ -2054,7 +2054,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import os\n\nimport orjson\nfrom astrapy.admin import parse_api_endpoint\n\nfrom langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store\nfrom langflow.helpers import docs_to_data\nfrom langflow.inputs import DictInput, FloatInput, MessageTextInput\nfrom langflow.io import (\n BoolInput,\n DataInput,\n DropdownInput,\n HandleInput,\n IntInput,\n MultilineInput,\n SecretStrInput,\n StrInput,\n)\nfrom langflow.schema import Data\n\n\nclass AstraVectorStoreComponent(LCVectorStoreComponent):\n display_name: str = \"Astra DB\"\n description: str = \"Implementation of Vector Store using Astra DB with search capabilities\"\n documentation: str = \"https://docs.langflow.org/starter-projects-vector-store-rag\"\n name = \"AstraDB\"\n icon: str = \"AstraDB\"\n\n VECTORIZE_PROVIDERS_MAPPING = {\n \"Azure OpenAI\": [\"azureOpenAI\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Hugging Face - Dedicated\": [\"huggingfaceDedicated\", [\"endpoint-defined-model\"]],\n \"Hugging Face - Serverless\": [\n \"huggingface\",\n [\n \"sentence-transformers/all-MiniLM-L6-v2\",\n \"intfloat/multilingual-e5-large\",\n \"intfloat/multilingual-e5-large-instruct\",\n \"BAAI/bge-small-en-v1.5\",\n \"BAAI/bge-base-en-v1.5\",\n \"BAAI/bge-large-en-v1.5\",\n ],\n ],\n \"Jina AI\": [\n \"jinaAI\",\n [\n \"jina-embeddings-v2-base-en\",\n \"jina-embeddings-v2-base-de\",\n \"jina-embeddings-v2-base-es\",\n \"jina-embeddings-v2-base-code\",\n \"jina-embeddings-v2-base-zh\",\n ],\n ],\n \"Mistral AI\": [\"mistral\", [\"mistral-embed\"]],\n \"NVIDIA\": [\"nvidia\", [\"NV-Embed-QA\"]],\n \"OpenAI\": [\"openai\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Upstage\": [\"upstageAI\", [\"solar-embedding-1-large\"]],\n \"Voyage AI\": [\n \"voyageAI\",\n [\"voyage-large-2-instruct\", \"voyage-law-2\", \"voyage-code-2\", \"voyage-large-2\", \"voyage-2\"],\n ],\n }\n\n inputs = [\n SecretStrInput(\n name=\"token\",\n display_name=\"Astra DB Application Token\",\n info=\"Authentication token for accessing Astra DB.\",\n value=\"ASTRA_DB_APPLICATION_TOKEN\",\n required=True,\n advanced=os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\",\n ),\n SecretStrInput(\n name=\"api_endpoint\",\n display_name=\"Database\" if os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\" else \"API Endpoint\",\n info=\"API endpoint URL for the Astra DB service.\",\n value=\"ASTRA_DB_API_ENDPOINT\",\n required=True,\n ),\n StrInput(\n name=\"collection_name\",\n display_name=\"Collection Name\",\n info=\"The name of the collection within Astra DB where the vectors will be stored.\",\n required=True,\n ),\n MultilineInput(\n name=\"search_input\",\n display_name=\"Search Input\",\n ),\n DataInput(\n name=\"ingest_data\",\n display_name=\"Ingest Data\",\n is_list=True,\n ),\n StrInput(\n name=\"namespace\",\n display_name=\"Namespace\",\n info=\"Optional namespace within Astra DB to use for the collection.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"embedding_service\",\n display_name=\"Embedding Model or Astra Vectorize\",\n info=\"Determines whether to use Astra Vectorize for the collection.\",\n options=[\"Embedding Model\", \"Astra Vectorize\"],\n real_time_refresh=True,\n value=\"Embedding Model\",\n ),\n HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ),\n DropdownInput(\n name=\"metric\",\n display_name=\"Metric\",\n info=\"Optional distance metric for vector comparisons in the vector store.\",\n options=[\"cosine\", \"dot_product\", \"euclidean\"],\n value=\"cosine\",\n advanced=True,\n ),\n IntInput(\n name=\"batch_size\",\n display_name=\"Batch Size\",\n info=\"Optional number of data to process in a single batch.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_batch_concurrency\",\n display_name=\"Bulk Insert Batch Concurrency\",\n info=\"Optional concurrency level for bulk insert operations.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_overwrite_concurrency\",\n display_name=\"Bulk Insert Overwrite Concurrency\",\n info=\"Optional concurrency level for bulk insert operations that overwrite existing data.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_delete_concurrency\",\n display_name=\"Bulk Delete Concurrency\",\n info=\"Optional concurrency level for bulk delete operations.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"setup_mode\",\n display_name=\"Setup Mode\",\n info=\"Configuration mode for setting up the vector store, with options like 'Sync' or 'Off'.\",\n options=[\"Sync\", \"Off\"],\n advanced=True,\n value=\"Sync\",\n ),\n BoolInput(\n name=\"pre_delete_collection\",\n display_name=\"Pre Delete Collection\",\n info=\"Boolean flag to determine whether to delete the collection before creating a new one.\",\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_include\",\n display_name=\"Metadata Indexing Include\",\n info=\"Optional list of metadata fields to include in the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_exclude\",\n display_name=\"Metadata Indexing Exclude\",\n info=\"Optional list of metadata fields to exclude from the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"collection_indexing_policy\",\n display_name=\"Collection Indexing Policy\",\n info='Optional JSON string for the \"indexing\" field of the collection. '\n \"See https://docs.datastax.com/en/astra-db-serverless/api-reference/collections.html#the-indexing-option\",\n advanced=True,\n ),\n IntInput(\n name=\"number_of_results\",\n display_name=\"Number of Results\",\n info=\"Number of results to return.\",\n advanced=True,\n value=4,\n ),\n DropdownInput(\n name=\"search_type\",\n display_name=\"Search Type\",\n info=\"Search type to use\",\n options=[\"Similarity\", \"Similarity with score threshold\", \"MMR (Max Marginal Relevance)\"],\n value=\"Similarity\",\n advanced=True,\n ),\n FloatInput(\n name=\"search_score_threshold\",\n display_name=\"Search Score Threshold\",\n info=\"Minimum similarity score threshold for search results. \"\n \"(when using 'Similarity with score threshold')\",\n value=0,\n advanced=True,\n ),\n DictInput(\n name=\"search_filter\",\n display_name=\"Search Metadata Filter\",\n info=\"Optional dictionary of filters to apply to the search query.\",\n advanced=True,\n is_list=True,\n ),\n ]\n\n def insert_in_dict(self, build_config, field_name, new_parameters):\n # Insert the new key-value pair after the found key\n for new_field_name, new_parameter in new_parameters.items():\n # Get all the items as a list of tuples (key, value)\n items = list(build_config.items())\n\n # Find the index of the key to insert after\n idx = len(items)\n for i, (key, _) in enumerate(items):\n if key == field_name:\n idx = i + 1\n break\n\n items.insert(idx, (new_field_name, new_parameter))\n\n # Clear the original dictionary and update with the modified items\n build_config.clear()\n build_config.update(items)\n\n return build_config\n\n def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):\n if field_name == \"embedding_service\":\n if field_value == \"Astra Vectorize\":\n for field in [\"embedding\"]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = DropdownInput(\n name=\"provider\",\n display_name=\"Vectorize Provider\",\n options=self.VECTORIZE_PROVIDERS_MAPPING.keys(),\n value=\"\",\n required=True,\n real_time_refresh=True,\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"provider\": new_parameter})\n else:\n for field in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"embedding\": new_parameter})\n\n elif field_name == \"provider\":\n for field in [\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n model_options = self.VECTORIZE_PROVIDERS_MAPPING[field_value][1]\n\n new_parameter_0 = DropdownInput(\n name=\"z_00_model_name\",\n display_name=\"Model Name\",\n info=\"The embedding model to use for the selected provider. Each provider has a different set of \"\n \"models available (full list at \"\n \"https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\\n\\n\"\n f\"{', '.join(model_options)}\",\n options=model_options,\n placeholder=\"Select a model\",\n value=model_options[0],\n required=True,\n ).to_dict()\n\n new_parameter_1 = DictInput(\n name=\"z_01_model_parameters\",\n display_name=\"Model Parameters\",\n is_list=True,\n ).to_dict()\n\n new_parameter_2 = MessageTextInput(\n name=\"z_02_api_key_name\",\n display_name=\"API Key name\",\n info=\"The name of the embeddings provider API key stored on Astra. \"\n \"If set, it will override the 'ProviderKey' in the authentication parameters.\",\n ).to_dict()\n\n new_parameter_3 = SecretStrInput(\n name=\"z_03_provider_api_key\",\n display_name=\"Provider API Key\",\n info=\"An alternative to the Astra Authentication that passes an API key for the provider \"\n \"with each request to Astra DB. \"\n \"This may be used when Vectorize is configured for the collection, \"\n \"but no corresponding provider secret is stored within Astra's key management system.\",\n ).to_dict()\n\n new_parameter_4 = DictInput(\n name=\"z_04_authentication\",\n display_name=\"Authentication parameters\",\n is_list=True,\n ).to_dict()\n\n self.insert_in_dict(\n build_config,\n \"provider\",\n {\n \"z_00_model_name\": new_parameter_0,\n \"z_01_model_parameters\": new_parameter_1,\n \"z_02_api_key_name\": new_parameter_2,\n \"z_03_provider_api_key\": new_parameter_3,\n \"z_04_authentication\": new_parameter_4,\n },\n )\n\n return build_config\n\n def build_vectorize_options(self, **kwargs):\n for attribute in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if not hasattr(self, attribute):\n setattr(self, attribute, None)\n\n # Fetch values from kwargs if any self.* attributes are None\n provider_value = self.VECTORIZE_PROVIDERS_MAPPING.get(self.provider, [None])[0] or kwargs.get(\"provider\")\n authentication = {**(self.z_04_authentication or kwargs.get(\"z_04_authentication\", {}))}\n\n api_key_name = self.z_02_api_key_name or kwargs.get(\"z_02_api_key_name\")\n provider_key = self.z_03_provider_api_key or kwargs.get(\"z_03_provider_api_key\")\n if api_key_name:\n authentication[\"providerKey\"] = api_key_name\n\n return {\n # must match astrapy.info.CollectionVectorServiceOptions\n \"collection_vector_service_options\": {\n \"provider\": provider_value,\n \"modelName\": self.z_00_model_name or kwargs.get(\"z_00_model_name\"),\n \"authentication\": authentication,\n \"parameters\": self.z_01_model_parameters or kwargs.get(\"z_01_model_parameters\", {}),\n },\n \"collection_embedding_api_key\": provider_key,\n }\n\n @check_cached_vector_store\n def build_vector_store(self, vectorize_options=None):\n try:\n from langchain_astradb import AstraDBVectorStore\n from langchain_astradb.utils.astradb import SetupMode\n except ImportError as e:\n msg = (\n \"Could not import langchain Astra DB integration package. \"\n \"Please install it with `pip install langchain-astradb`.\"\n )\n raise ImportError(msg) from e\n\n try:\n if not self.setup_mode:\n self.setup_mode = self._inputs[\"setup_mode\"].options[0]\n\n setup_mode_value = SetupMode[self.setup_mode.upper()]\n except KeyError as e:\n msg = f\"Invalid setup mode: {self.setup_mode}\"\n raise ValueError(msg) from e\n\n if self.embedding_service == \"Embedding Model\":\n embedding_dict = {\"embedding\": self.embedding}\n else:\n from astrapy.info import CollectionVectorServiceOptions\n\n dict_options = vectorize_options or self.build_vectorize_options()\n dict_options[\"authentication\"] = {\n k: v for k, v in dict_options.get(\"authentication\", {}).items() if k and v\n }\n dict_options[\"parameters\"] = {k: v for k, v in dict_options.get(\"parameters\", {}).items() if k and v}\n\n embedding_dict = {\n \"collection_vector_service_options\": CollectionVectorServiceOptions.from_dict(\n dict_options.get(\"collection_vector_service_options\", {})\n ),\n \"collection_embedding_api_key\": dict_options.get(\"collection_embedding_api_key\"),\n }\n try:\n vector_store = AstraDBVectorStore(\n collection_name=self.collection_name,\n token=self.token,\n api_endpoint=self.api_endpoint,\n namespace=self.namespace or None,\n environment=parse_api_endpoint(self.api_endpoint).environment if self.api_endpoint else None,\n metric=self.metric or None,\n batch_size=self.batch_size or None,\n bulk_insert_batch_concurrency=self.bulk_insert_batch_concurrency or None,\n bulk_insert_overwrite_concurrency=self.bulk_insert_overwrite_concurrency or None,\n bulk_delete_concurrency=self.bulk_delete_concurrency or None,\n setup_mode=setup_mode_value,\n pre_delete_collection=self.pre_delete_collection,\n metadata_indexing_include=[s for s in self.metadata_indexing_include if s] or None,\n metadata_indexing_exclude=[s for s in self.metadata_indexing_exclude if s] or None,\n collection_indexing_policy=orjson.dumps(self.collection_indexing_policy)\n if self.collection_indexing_policy\n else None,\n **embedding_dict,\n )\n except Exception as e:\n msg = f\"Error initializing AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self._add_documents_to_vector_store(vector_store)\n\n return vector_store\n\n def _add_documents_to_vector_store(self, vector_store) -> None:\n documents = []\n for _input in self.ingest_data or []:\n if isinstance(_input, Data):\n documents.append(_input.to_lc_document())\n else:\n msg = \"Vector Store Inputs must be Data objects.\"\n raise TypeError(msg)\n\n if documents:\n self.log(f\"Adding {len(documents)} documents to the Vector Store.\")\n try:\n vector_store.add_documents(documents)\n except Exception as e:\n msg = f\"Error adding documents to AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n else:\n self.log(\"No documents to add to the Vector Store.\")\n\n def _map_search_type(self) -> str:\n if self.search_type == \"Similarity with score threshold\":\n return \"similarity_score_threshold\"\n if self.search_type == \"MMR (Max Marginal Relevance)\":\n return \"mmr\"\n return \"similarity\"\n\n def _build_search_args(self):\n args = {\n \"k\": self.number_of_results,\n \"score_threshold\": self.search_score_threshold,\n }\n\n if self.search_filter:\n clean_filter = {k: v for k, v in self.search_filter.items() if k and v}\n if len(clean_filter) > 0:\n args[\"filter\"] = clean_filter\n return args\n\n def search_documents(self, vector_store=None) -> list[Data]:\n if not vector_store:\n vector_store = self.build_vector_store()\n\n self.log(f\"Search input: {self.search_input}\")\n self.log(f\"Search type: {self.search_type}\")\n self.log(f\"Number of results: {self.number_of_results}\")\n\n if self.search_input and isinstance(self.search_input, str) and self.search_input.strip():\n try:\n search_type = self._map_search_type()\n search_args = self._build_search_args()\n\n docs = vector_store.search(query=self.search_input, search_type=search_type, **search_args)\n except Exception as e:\n msg = f\"Error performing search in AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self.log(f\"Retrieved documents: {len(docs)}\")\n\n data = docs_to_data(docs)\n self.log(f\"Converted documents to data: {len(data)}\")\n self.status = data\n return data\n self.log(\"No search input provided. Skipping search.\")\n return []\n\n def get_retriever_kwargs(self):\n search_args = self._build_search_args()\n return {\n \"search_type\": self._map_search_type(),\n \"search_kwargs\": search_args,\n }\n" + "value": "import os\n\nimport orjson\nfrom astrapy.admin import parse_api_endpoint\n\nfrom langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store\nfrom langflow.helpers import docs_to_data\nfrom langflow.inputs import DictInput, FloatInput, MessageTextInput\nfrom langflow.io import (\n BoolInput,\n DataInput,\n DropdownInput,\n HandleInput,\n IntInput,\n MultilineInput,\n SecretStrInput,\n StrInput,\n)\nfrom langflow.schema import Data\n\n\nclass AstraVectorStoreComponent(LCVectorStoreComponent):\n display_name: str = \"Astra DB\"\n description: str = \"Implementation of Vector Store using Astra DB with search capabilities\"\n documentation: str = \"https://docs.langflow.org/starter-projects-vector-store-rag\"\n name = \"AstraDB\"\n icon: str = \"AstraDB\"\n\n VECTORIZE_PROVIDERS_MAPPING = {\n \"Azure OpenAI\": [\"azureOpenAI\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Hugging Face - Dedicated\": [\"huggingfaceDedicated\", [\"endpoint-defined-model\"]],\n \"Hugging Face - Serverless\": [\n \"huggingface\",\n [\n \"sentence-transformers/all-MiniLM-L6-v2\",\n \"intfloat/multilingual-e5-large\",\n \"intfloat/multilingual-e5-large-instruct\",\n \"BAAI/bge-small-en-v1.5\",\n \"BAAI/bge-base-en-v1.5\",\n \"BAAI/bge-large-en-v1.5\",\n ],\n ],\n \"Jina AI\": [\n \"jinaAI\",\n [\n \"jina-embeddings-v2-base-en\",\n \"jina-embeddings-v2-base-de\",\n \"jina-embeddings-v2-base-es\",\n \"jina-embeddings-v2-base-code\",\n \"jina-embeddings-v2-base-zh\",\n ],\n ],\n \"Mistral AI\": [\"mistral\", [\"mistral-embed\"]],\n \"NVIDIA\": [\"nvidia\", [\"NV-Embed-QA\"]],\n \"OpenAI\": [\"openai\", [\"text-embedding-3-small\", \"text-embedding-3-large\", \"text-embedding-ada-002\"]],\n \"Upstage\": [\"upstageAI\", [\"solar-embedding-1-large\"]],\n \"Voyage AI\": [\n \"voyageAI\",\n [\"voyage-large-2-instruct\", \"voyage-law-2\", \"voyage-code-2\", \"voyage-large-2\", \"voyage-2\"],\n ],\n }\n\n inputs = [\n SecretStrInput(\n name=\"token\",\n display_name=\"Astra DB Application Token\",\n info=\"Authentication token for accessing Astra DB.\",\n value=\"ASTRA_DB_APPLICATION_TOKEN\",\n required=True,\n advanced=os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\",\n ),\n SecretStrInput(\n name=\"api_endpoint\",\n display_name=\"Database\" if os.getenv(\"ASTRA_ENHANCED\", \"false\").lower() == \"true\" else \"API Endpoint\",\n info=\"API endpoint URL for the Astra DB service.\",\n value=\"ASTRA_DB_API_ENDPOINT\",\n required=True,\n ),\n StrInput(\n name=\"collection_name\",\n display_name=\"Collection Name\",\n info=\"The name of the collection within Astra DB where the vectors will be stored.\",\n required=True,\n ),\n MultilineInput(\n name=\"search_input\",\n display_name=\"Search Input\",\n ),\n DataInput(\n name=\"ingest_data\",\n display_name=\"Ingest Data\",\n is_list=True,\n ),\n StrInput(\n name=\"namespace\",\n display_name=\"Namespace\",\n info=\"Optional namespace within Astra DB to use for the collection.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"embedding_service\",\n display_name=\"Embedding Model or Astra Vectorize\",\n info=\"Determines whether to use Astra Vectorize for the collection.\",\n options=[\"Embedding Model\", \"Astra Vectorize\"],\n real_time_refresh=True,\n value=\"Embedding Model\",\n ),\n HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ),\n DropdownInput(\n name=\"metric\",\n display_name=\"Metric\",\n info=\"Optional distance metric for vector comparisons in the vector store.\",\n options=[\"cosine\", \"dot_product\", \"euclidean\"],\n value=\"cosine\",\n advanced=True,\n ),\n IntInput(\n name=\"batch_size\",\n display_name=\"Batch Size\",\n info=\"Optional number of data to process in a single batch.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_batch_concurrency\",\n display_name=\"Bulk Insert Batch Concurrency\",\n info=\"Optional concurrency level for bulk insert operations.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_insert_overwrite_concurrency\",\n display_name=\"Bulk Insert Overwrite Concurrency\",\n info=\"Optional concurrency level for bulk insert operations that overwrite existing data.\",\n advanced=True,\n ),\n IntInput(\n name=\"bulk_delete_concurrency\",\n display_name=\"Bulk Delete Concurrency\",\n info=\"Optional concurrency level for bulk delete operations.\",\n advanced=True,\n ),\n DropdownInput(\n name=\"setup_mode\",\n display_name=\"Setup Mode\",\n info=\"Configuration mode for setting up the vector store, with options like 'Sync' or 'Off'.\",\n options=[\"Sync\", \"Off\"],\n advanced=True,\n value=\"Sync\",\n ),\n BoolInput(\n name=\"pre_delete_collection\",\n display_name=\"Pre Delete Collection\",\n info=\"Boolean flag to determine whether to delete the collection before creating a new one.\",\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_include\",\n display_name=\"Metadata Indexing Include\",\n info=\"Optional list of metadata fields to include in the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"metadata_indexing_exclude\",\n display_name=\"Metadata Indexing Exclude\",\n info=\"Optional list of metadata fields to exclude from the indexing.\",\n is_list=True,\n advanced=True,\n ),\n StrInput(\n name=\"collection_indexing_policy\",\n display_name=\"Collection Indexing Policy\",\n info='Optional JSON string for the \"indexing\" field of the collection. '\n \"See https://docs.datastax.com/en/astra-db-serverless/api-reference/collections.html#the-indexing-option\",\n advanced=True,\n ),\n IntInput(\n name=\"number_of_results\",\n display_name=\"Number of Results\",\n info=\"Number of results to return.\",\n advanced=True,\n value=4,\n ),\n DropdownInput(\n name=\"search_type\",\n display_name=\"Search Type\",\n info=\"Search type to use\",\n options=[\"Similarity\", \"Similarity with score threshold\", \"MMR (Max Marginal Relevance)\"],\n value=\"Similarity\",\n advanced=True,\n ),\n FloatInput(\n name=\"search_score_threshold\",\n display_name=\"Search Score Threshold\",\n info=\"Minimum similarity score threshold for search results. \"\n \"(when using 'Similarity with score threshold')\",\n value=0,\n advanced=True,\n ),\n DictInput(\n name=\"search_filter\",\n display_name=\"Search Metadata Filter\",\n info=\"Optional dictionary of filters to apply to the search query.\",\n advanced=True,\n is_list=True,\n ),\n ]\n\n def insert_in_dict(self, build_config, field_name, new_parameters):\n # Insert the new key-value pair after the found key\n for new_field_name, new_parameter in new_parameters.items():\n # Get all the items as a list of tuples (key, value)\n items = list(build_config.items())\n\n # Find the index of the key to insert after\n idx = len(items)\n for i, (key, _) in enumerate(items):\n if key == field_name:\n idx = i + 1\n break\n\n items.insert(idx, (new_field_name, new_parameter))\n\n # Clear the original dictionary and update with the modified items\n build_config.clear()\n build_config.update(items)\n\n return build_config\n\n def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None):\n if field_name == \"embedding_service\":\n if field_value == \"Astra Vectorize\":\n for field in [\"embedding\"]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = DropdownInput(\n name=\"provider\",\n display_name=\"Vectorize Provider\",\n options=self.VECTORIZE_PROVIDERS_MAPPING.keys(),\n value=\"\",\n required=True,\n real_time_refresh=True,\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"provider\": new_parameter})\n else:\n for field in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n new_parameter = HandleInput(\n name=\"embedding\",\n display_name=\"Embedding Model\",\n input_types=[\"Embeddings\"],\n info=\"Allows an embedding model configuration.\",\n ).to_dict()\n\n self.insert_in_dict(build_config, \"embedding_service\", {\"embedding\": new_parameter})\n\n elif field_name == \"provider\":\n for field in [\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if field in build_config:\n del build_config[field]\n\n model_options = self.VECTORIZE_PROVIDERS_MAPPING[field_value][1]\n\n new_parameter_0 = DropdownInput(\n name=\"z_00_model_name\",\n display_name=\"Model Name\",\n info=\"The embedding model to use for the selected provider. Each provider has a different set of \"\n \"models available (full list at \"\n \"https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html):\\n\\n\"\n f\"{', '.join(model_options)}\",\n options=model_options,\n placeholder=\"Select a model\",\n value=model_options[0],\n required=True,\n ).to_dict()\n\n new_parameter_1 = DictInput(\n name=\"z_01_model_parameters\",\n display_name=\"Model Parameters\",\n is_list=True,\n ).to_dict()\n\n new_parameter_2 = MessageTextInput(\n name=\"z_02_api_key_name\",\n display_name=\"API Key name\",\n info=\"The name of the embeddings provider API key stored on Astra. \"\n \"If set, it will override the 'ProviderKey' in the authentication parameters.\",\n ).to_dict()\n\n new_parameter_3 = SecretStrInput(\n name=\"z_03_provider_api_key\",\n display_name=\"Provider API Key\",\n info=\"An alternative to the Astra Authentication that passes an API key for the provider \"\n \"with each request to Astra DB. \"\n \"This may be used when Vectorize is configured for the collection, \"\n \"but no corresponding provider secret is stored within Astra's key management system.\",\n ).to_dict()\n\n new_parameter_4 = DictInput(\n name=\"z_04_authentication\",\n display_name=\"Authentication parameters\",\n is_list=True,\n ).to_dict()\n\n self.insert_in_dict(\n build_config,\n \"provider\",\n {\n \"z_00_model_name\": new_parameter_0,\n \"z_01_model_parameters\": new_parameter_1,\n \"z_02_api_key_name\": new_parameter_2,\n \"z_03_provider_api_key\": new_parameter_3,\n \"z_04_authentication\": new_parameter_4,\n },\n )\n\n return build_config\n\n def build_vectorize_options(self, **kwargs):\n for attribute in [\n \"provider\",\n \"z_00_model_name\",\n \"z_01_model_parameters\",\n \"z_02_api_key_name\",\n \"z_03_provider_api_key\",\n \"z_04_authentication\",\n ]:\n if not hasattr(self, attribute):\n setattr(self, attribute, None)\n\n # Fetch values from kwargs if any self.* attributes are None\n provider_value = self.VECTORIZE_PROVIDERS_MAPPING.get(self.provider, [None])[0] or kwargs.get(\"provider\")\n model_name = self.z_00_model_name or kwargs.get(\"z_00_model_name\")\n authentication = {**(self.z_04_authentication or kwargs.get(\"z_04_authentication\", {}))}\n parameters = self.z_01_model_parameters or kwargs.get(\"z_01_model_parameters\", {})\n\n # Set the API key name if provided\n api_key_name = self.z_02_api_key_name or kwargs.get(\"z_02_api_key_name\")\n provider_key = self.z_03_provider_api_key or kwargs.get(\"z_03_provider_api_key\")\n if api_key_name:\n authentication[\"providerKey\"] = api_key_name\n\n # Set authentication and parameters to None if no values are provided\n if not authentication:\n authentication = None\n if not parameters:\n parameters = None\n\n return {\n # must match astrapy.info.CollectionVectorServiceOptions\n \"collection_vector_service_options\": {\n \"provider\": provider_value,\n \"modelName\": model_name,\n \"authentication\": authentication,\n \"parameters\": parameters,\n },\n \"collection_embedding_api_key\": provider_key,\n }\n\n @check_cached_vector_store\n def build_vector_store(self, vectorize_options=None):\n try:\n from langchain_astradb import AstraDBVectorStore\n from langchain_astradb.utils.astradb import SetupMode\n except ImportError as e:\n msg = (\n \"Could not import langchain Astra DB integration package. \"\n \"Please install it with `pip install langchain-astradb`.\"\n )\n raise ImportError(msg) from e\n\n try:\n if not self.setup_mode:\n self.setup_mode = self._inputs[\"setup_mode\"].options[0]\n\n setup_mode_value = SetupMode[self.setup_mode.upper()]\n except KeyError as e:\n msg = f\"Invalid setup mode: {self.setup_mode}\"\n raise ValueError(msg) from e\n\n if self.embedding_service == \"Embedding Model\":\n embedding_dict = {\"embedding\": self.embedding}\n else:\n from astrapy.info import CollectionVectorServiceOptions\n\n # Fetch values from kwargs if any self.* attributes are None\n dict_options = vectorize_options or self.build_vectorize_options()\n\n # Set the embedding dictionary\n embedding_dict = {\n \"collection_vector_service_options\": CollectionVectorServiceOptions.from_dict(\n dict_options.get(\"collection_vector_service_options\")\n ),\n \"collection_embedding_api_key\": dict_options.get(\"collection_embedding_api_key\"),\n }\n try:\n vector_store = AstraDBVectorStore(\n collection_name=self.collection_name,\n token=self.token,\n api_endpoint=self.api_endpoint,\n namespace=self.namespace or None,\n environment=parse_api_endpoint(self.api_endpoint).environment if self.api_endpoint else None,\n metric=self.metric or None,\n batch_size=self.batch_size or None,\n bulk_insert_batch_concurrency=self.bulk_insert_batch_concurrency or None,\n bulk_insert_overwrite_concurrency=self.bulk_insert_overwrite_concurrency or None,\n bulk_delete_concurrency=self.bulk_delete_concurrency or None,\n setup_mode=setup_mode_value,\n pre_delete_collection=self.pre_delete_collection,\n metadata_indexing_include=[s for s in self.metadata_indexing_include if s] or None,\n metadata_indexing_exclude=[s for s in self.metadata_indexing_exclude if s] or None,\n collection_indexing_policy=orjson.dumps(self.collection_indexing_policy)\n if self.collection_indexing_policy\n else None,\n **embedding_dict,\n )\n except Exception as e:\n msg = f\"Error initializing AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self._add_documents_to_vector_store(vector_store)\n\n return vector_store\n\n def _add_documents_to_vector_store(self, vector_store) -> None:\n documents = []\n for _input in self.ingest_data or []:\n if isinstance(_input, Data):\n documents.append(_input.to_lc_document())\n else:\n msg = \"Vector Store Inputs must be Data objects.\"\n raise TypeError(msg)\n\n if documents:\n self.log(f\"Adding {len(documents)} documents to the Vector Store.\")\n try:\n vector_store.add_documents(documents)\n except Exception as e:\n msg = f\"Error adding documents to AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n else:\n self.log(\"No documents to add to the Vector Store.\")\n\n def _map_search_type(self) -> str:\n if self.search_type == \"Similarity with score threshold\":\n return \"similarity_score_threshold\"\n if self.search_type == \"MMR (Max Marginal Relevance)\":\n return \"mmr\"\n return \"similarity\"\n\n def _build_search_args(self):\n args = {\n \"k\": self.number_of_results,\n \"score_threshold\": self.search_score_threshold,\n }\n\n if self.search_filter:\n clean_filter = {k: v for k, v in self.search_filter.items() if k and v}\n if len(clean_filter) > 0:\n args[\"filter\"] = clean_filter\n return args\n\n def search_documents(self, vector_store=None) -> list[Data]:\n if not vector_store:\n vector_store = self.build_vector_store()\n\n self.log(f\"Search input: {self.search_input}\")\n self.log(f\"Search type: {self.search_type}\")\n self.log(f\"Number of results: {self.number_of_results}\")\n\n if self.search_input and isinstance(self.search_input, str) and self.search_input.strip():\n try:\n search_type = self._map_search_type()\n search_args = self._build_search_args()\n\n docs = vector_store.search(query=self.search_input, search_type=search_type, **search_args)\n except Exception as e:\n msg = f\"Error performing search in AstraDBVectorStore: {e}\"\n raise ValueError(msg) from e\n\n self.log(f\"Retrieved documents: {len(docs)}\")\n\n data = docs_to_data(docs)\n self.log(f\"Converted documents to data: {len(data)}\")\n self.status = data\n return data\n self.log(\"No search input provided. Skipping search.\")\n return []\n\n def get_retriever_kwargs(self):\n search_args = self._build_search_args()\n return {\n \"search_type\": self._map_search_type(),\n \"search_kwargs\": search_args,\n }\n" }, "collection_indexing_policy": { "advanced": true, @@ -3379,7 +3379,7 @@ "show": true, "title_case": false, "type": "code", - "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(name=\"model_kwargs\", display_name=\"Model Kwargs\", advanced=True),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" + "value": "import operator\nfrom functools import reduce\n\nfrom langchain_openai import ChatOpenAI\nfrom pydantic.v1 import SecretStr\n\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs import BoolInput, DictInput, DropdownInput, FloatInput, IntInput, SecretStrInput, StrInput\nfrom langflow.inputs.inputs import HandleInput\n\n\nclass OpenAIModelComponent(LCModelComponent):\n display_name = \"OpenAI\"\n description = \"Generates text using OpenAI LLMs.\"\n icon = \"OpenAI\"\n name = \"OpenAIModel\"\n\n inputs = [\n *LCModelComponent._base_inputs,\n IntInput(\n name=\"max_tokens\",\n display_name=\"Max Tokens\",\n advanced=True,\n info=\"The maximum number of tokens to generate. Set to 0 for unlimited tokens.\",\n range_spec=RangeSpec(min=0, max=128000),\n ),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n BoolInput(\n name=\"json_mode\",\n display_name=\"JSON Mode\",\n advanced=True,\n info=\"If True, it will output JSON regardless of passing a schema.\",\n ),\n DictInput(\n name=\"output_schema\",\n is_list=True,\n display_name=\"Schema\",\n advanced=True,\n info=\"The schema for the Output of the model. \"\n \"You must pass the word JSON in the prompt. \"\n \"If left blank, JSON mode will be disabled. [DEPRECATED]\",\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n advanced=False,\n options=OPENAI_MODEL_NAMES,\n value=OPENAI_MODEL_NAMES[0],\n ),\n StrInput(\n name=\"openai_api_base\",\n display_name=\"OpenAI API Base\",\n advanced=True,\n info=\"The base URL of the OpenAI API. \"\n \"Defaults to https://api.openai.com/v1. \"\n \"You can change this to use other APIs like JinaChat, LocalAI and Prem.\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"The OpenAI API Key to use for the OpenAI model.\",\n advanced=False,\n value=\"OPENAI_API_KEY\",\n ),\n FloatInput(name=\"temperature\", display_name=\"Temperature\", value=0.1),\n IntInput(\n name=\"seed\",\n display_name=\"Seed\",\n info=\"The seed controls the reproducibility of the job.\",\n advanced=True,\n value=1,\n ),\n HandleInput(\n name=\"output_parser\",\n display_name=\"Output Parser\",\n info=\"The parser to use to parse the output of the model\",\n advanced=True,\n input_types=[\"OutputParser\"],\n ),\n ]\n\n def build_model(self) -> LanguageModel: # type: ignore[type-var]\n # self.output_schema is a list of dictionaries\n # let's convert it to a dictionary\n output_schema_dict: dict[str, str] = reduce(operator.ior, self.output_schema or {}, {})\n openai_api_key = self.api_key\n temperature = self.temperature\n model_name: str = self.model_name\n max_tokens = self.max_tokens\n model_kwargs = self.model_kwargs or {}\n openai_api_base = self.openai_api_base or \"https://api.openai.com/v1\"\n json_mode = bool(output_schema_dict) or self.json_mode\n seed = self.seed\n\n api_key = SecretStr(openai_api_key).get_secret_value() if openai_api_key else None\n output = ChatOpenAI(\n max_tokens=max_tokens or None,\n model_kwargs=model_kwargs,\n model=model_name,\n base_url=openai_api_base,\n api_key=api_key,\n temperature=temperature if temperature is not None else 0.1,\n seed=seed,\n )\n if json_mode:\n if output_schema_dict:\n output = output.with_structured_output(schema=output_schema_dict, method=\"json_mode\")\n else:\n output = output.bind(response_format={\"type\": \"json_object\"})\n\n return output\n\n def _get_exception_message(self, e: Exception):\n \"\"\"Get a message from an OpenAI exception.\n\n Args:\n e (Exception): The exception to get the message from.\n\n Returns:\n str: The message from the exception.\n \"\"\"\n try:\n from openai import BadRequestError\n except ImportError:\n return None\n if isinstance(e, BadRequestError):\n message = e.body.get(\"message\")\n if message:\n return message\n return None\n" }, "input_value": { "advanced": false, @@ -3435,7 +3435,7 @@ "advanced": true, "display_name": "Model Kwargs", "dynamic": false, - "info": "", + "info": "Additional keyword arguments to pass to the model.", "list": false, "name": "model_kwargs", "placeholder": "", diff --git a/src/frontend/src/CustomNodes/GenericNode/components/NodeOutputfield/index.tsx b/src/frontend/src/CustomNodes/GenericNode/components/NodeOutputfield/index.tsx index 3bddc9ad16d1..b0a50a48505a 100644 --- a/src/frontend/src/CustomNodes/GenericNode/components/NodeOutputfield/index.tsx +++ b/src/frontend/src/CustomNodes/GenericNode/components/NodeOutputfield/index.tsx @@ -130,7 +130,7 @@ export default function NodeOutputField({ ref={ref} className={cn( "relative mt-1 flex h-11 w-full flex-wrap items-center justify-between bg-muted px-5 py-2", - lastOutput ? "last-output-border" : "", + lastOutput ? "rounded-b-[0.69rem]" : "", isToolMode && "bg-primary", outputName === "component_as_tool" && "border-l-2 border-primary pl-2", )} diff --git a/src/frontend/src/CustomNodes/GenericNode/components/nodeIcon/index.tsx b/src/frontend/src/CustomNodes/GenericNode/components/nodeIcon/index.tsx index fc7e856347b9..55238a944676 100644 --- a/src/frontend/src/CustomNodes/GenericNode/components/nodeIcon/index.tsx +++ b/src/frontend/src/CustomNodes/GenericNode/components/nodeIcon/index.tsx @@ -1,5 +1,10 @@ import { useTypesStore } from "@/stores/typesStore"; -import { nodeColors, nodeIconsLucide } from "@/utils/styleUtils"; +import { + BG_NOISE, + nodeColors, + nodeIconsLucide, + toolModeGradient, +} from "@/utils/styleUtils"; import emojiRegex from "emoji-regex"; import { ICON_STROKE_WIDTH } from "@/constants/constants"; @@ -12,11 +17,13 @@ export function NodeIcon({ dataType, showNode, isGroup, + hasToolMode, }: { icon?: string; dataType: string; showNode: boolean; isGroup?: boolean; + hasToolMode: boolean; }) { const types = useTypesStore((state) => state.types); const name = nodeIconsLucide[dataType] ? dataType : types[dataType]; @@ -28,10 +35,11 @@ export function NodeIcon({ const iconClassName = cn( "generic-node-icon", - !showNode ? " show-node-icon " : "", isLucideIcon ? "lucide-icon" : "integration-icon", ); + const bgToolMode = BG_NOISE + "," + toolModeGradient; + const renderIcon = () => { if (icon && isEmoji) { return {icon}; @@ -41,28 +49,31 @@ export function NodeIcon({ return (