Skip to content

Commit 870171f

Browse files
committed
revert back & relint & reformat
revert revised to experimentals try to resolve conflict reverse change try to resolve conflict revised unittest reformat & relint revert update poetry
1 parent f88509c commit 870171f

File tree

18 files changed

+841
-469
lines changed

18 files changed

+841
-469
lines changed

docs/extras/modules/data_connection/retrievers/how_to/self_query/myscale_self_query.ipynb

+1-181
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11
{
22
"cells": [
33
{
4-
"attachments": {},
54
"cell_type": "markdown",
65
"id": "13afcae7",
76
"metadata": {},
@@ -18,7 +17,6 @@
1817
]
1918
},
2019
{
21-
"attachments": {},
2220
"cell_type": "markdown",
2321
"id": "68e75fb9",
2422
"metadata": {},
@@ -42,7 +40,6 @@
4240
]
4341
},
4442
{
45-
"attachments": {},
4643
"cell_type": "markdown",
4744
"id": "83811610-7df3-4ede-b268-68a6a83ba9e2",
4845
"metadata": {},
@@ -86,7 +83,6 @@
8683
]
8784
},
8885
{
89-
"attachments": {},
9086
"cell_type": "markdown",
9187
"id": "bf7f6fc4",
9288
"metadata": {},
@@ -145,7 +141,6 @@
145141
]
146142
},
147143
{
148-
"attachments": {},
149144
"cell_type": "markdown",
150145
"id": "5ecaab6d",
151146
"metadata": {},
@@ -203,7 +198,6 @@
203198
]
204199
},
205200
{
206-
"attachments": {},
207201
"cell_type": "markdown",
208202
"id": "ea9df8d4",
209203
"metadata": {},
@@ -274,7 +268,6 @@
274268
]
275269
},
276270
{
277-
"attachments": {},
278271
"cell_type": "markdown",
279272
"id": "86371ac8",
280273
"metadata": {},
@@ -331,7 +324,6 @@
331324
]
332325
},
333326
{
334-
"attachments": {},
335327
"cell_type": "markdown",
336328
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
337329
"metadata": {},
@@ -374,178 +366,6 @@
374366
"# This example only specifies a relevant query\n",
375367
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
376368
]
377-
},
378-
{
379-
"attachments": {},
380-
"cell_type": "markdown",
381-
"id": "d25c52b0",
382-
"metadata": {},
383-
"source": [
384-
"## SQL Self-Query Retriever with MyScale"
385-
]
386-
},
387-
{
388-
"cell_type": "code",
389-
"execution_count": null,
390-
"id": "0f824b20",
391-
"metadata": {},
392-
"outputs": [],
393-
"source": [
394-
"!pip3 install clickhouse-sqlalchemy InstructorEmbedding sentence_transformers openai"
395-
]
396-
},
397-
{
398-
"cell_type": "code",
399-
"execution_count": null,
400-
"id": "a7af1d99",
401-
"metadata": {},
402-
"outputs": [],
403-
"source": [
404-
"from os import environ\n",
405-
"\n",
406-
"environ[\"HTTPS_PROXY\"] = \"http://192.168.40.161:7890\"\n",
407-
"environ[\"OPENAI_API_BASE\"] = \"https://one-api.myscale.cloud/v1\"\n",
408-
"import getpass\n",
409-
"from typing import Dict, Any\n",
410-
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain, LLMChain\n",
411-
"from sqlalchemy import create_engine, Column, MetaData\n",
412-
"from langchain import PromptTemplate\n",
413-
"\n",
414-
"\n",
415-
"from sqlalchemy import create_engine\n",
416-
"\n",
417-
"MYSCALE_HOST = \"msc-1decbcc9.us-east-1.aws.staging.myscale.cloud\"\n",
418-
"MYSCALE_PORT = 443\n",
419-
"MYSCALE_USER = \"chatdata\"\n",
420-
"MYSCALE_PASSWORD = \"myscale_rocks\"\n",
421-
"OPENAI_API_KEY = getpass.getpass(\"OpenAI API Key:\")\n",
422-
"\n",
423-
"engine = create_engine(\n",
424-
" f\"clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https\"\n",
425-
")\n",
426-
"environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
427-
]
428-
},
429-
{
430-
"cell_type": "code",
431-
"execution_count": null,
432-
"id": "eceb0f9e",
433-
"metadata": {},
434-
"outputs": [],
435-
"source": [
436-
"from langchain.embeddings import HuggingFaceInstructEmbeddings\n",
437-
"from langchain.chains.sql_database.parser import VectorSQLOutputParser\n",
438-
"\n",
439-
"output_parser = VectorSQLOutputParser.from_embeddings(\n",
440-
" model=HuggingFaceInstructEmbeddings(\n",
441-
" model_name=\"hkunlp/instructor-base\", model_kwargs={\"device\": \"cpu\"}\n",
442-
" )\n",
443-
")"
444-
]
445-
},
446-
{
447-
"cell_type": "code",
448-
"execution_count": null,
449-
"id": "c7b3e108",
450-
"metadata": {},
451-
"outputs": [],
452-
"source": [
453-
"from langchain.callbacks import StdOutCallbackHandler\n",
454-
"\n",
455-
"metadata = MetaData(bind=engine)\n",
456-
"\n",
457-
"from langchain.chains.sql_database.base import SQLDatabaseChain\n",
458-
"from langchain.chains.sql_database.prompt import MYSCALE_PROMPT\n",
459-
"from langchain.sql_database import SQLDatabase\n",
460-
"from langchain.llms import OpenAI\n",
461-
"from langchain.chat_models import ChatOpenAI\n",
462-
"\n",
463-
"chain = SQLDatabaseChain(\n",
464-
" llm_chain=LLMChain(\n",
465-
" llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0),\n",
466-
" prompt=MYSCALE_PROMPT,\n",
467-
" output_parser=output_parser,\n",
468-
" ),\n",
469-
" top_k=10,\n",
470-
" return_direct=True,\n",
471-
" database=SQLDatabase(engine, None, metadata),\n",
472-
" native_format=True,\n",
473-
")\n",
474-
"\n",
475-
"import pandas as pd\n",
476-
"\n",
477-
"pd.DataFrame(\n",
478-
" chain.run(\n",
479-
" \"Please give me 10 papers to ask what is PageRank?\",\n",
480-
" callbacks=[StdOutCallbackHandler()],\n",
481-
" )\n",
482-
")"
483-
]
484-
},
485-
{
486-
"attachments": {},
487-
"cell_type": "markdown",
488-
"id": "9d6b1385",
489-
"metadata": {},
490-
"source": [
491-
"## SQL Database as Retriever"
492-
]
493-
},
494-
{
495-
"cell_type": "code",
496-
"execution_count": null,
497-
"id": "864ad4b1",
498-
"metadata": {},
499-
"outputs": [],
500-
"source": [
501-
"from langchain.retrievers import SQLDatabaseChainRetriever\n",
502-
"from langchain.chains.sql_database.parser import VectorSQLRetrieveAllOutputParser\n",
503-
"from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain\n",
504-
"\n",
505-
"output_parser_retrieve_all = VectorSQLRetrieveAllOutputParser.from_embeddings(\n",
506-
" output_parser.model\n",
507-
")\n",
508-
"\n",
509-
"chain = SQLDatabaseChain.from_llm(\n",
510-
" llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0),\n",
511-
" prompt=MYSCALE_PROMPT,\n",
512-
" top_k=10,\n",
513-
" return_direct=True,\n",
514-
" db=SQLDatabase(engine, None, metadata),\n",
515-
" sql_cmd_parser=output_parser_retrieve_all,\n",
516-
" native_format=True,\n",
517-
")\n",
518-
"\n",
519-
"# You need all those keys to get docs\n",
520-
"retriever = SQLDatabaseChainRetriever(sql_db_chain=chain, page_content_key=\"abstract\")\n",
521-
"\n",
522-
"document_with_metadata_prompt = PromptTemplate(\n",
523-
" input_variables=[\"page_content\", \"id\", \"title\", \"authors\", \"pubdate\", \"categories\"],\n",
524-
" template=\"Content:\\n\\tTitle: {title}\\n\\tAbstract: {page_content}\\n\\tAuthors: {authors}\\n\\tDate of Publication: {pubdate}\\n\\tCategories: {categories}\\nSOURCE: {id}\",\n",
525-
")\n",
526-
"\n",
527-
"chain = RetrievalQAWithSourcesChain.from_chain_type(\n",
528-
" ChatOpenAI(\n",
529-
" model_name=\"gpt-3.5-turbo-16k\", openai_api_key=OPENAI_API_KEY, temperature=0.6\n",
530-
" ),\n",
531-
" retriever=retriever,\n",
532-
" chain_type=\"stuff\",\n",
533-
" chain_type_kwargs={\n",
534-
" \"document_prompt\": document_with_metadata_prompt,\n",
535-
" },\n",
536-
" return_source_documents=True,\n",
537-
")\n",
538-
"ans = chain(\"Please give me 10 papers to ask what is PageRank?\")\n",
539-
"print(ans[\"answer\"])"
540-
]
541-
},
542-
{
543-
"cell_type": "code",
544-
"execution_count": null,
545-
"id": "1b1dddf5",
546-
"metadata": {},
547-
"outputs": [],
548-
"source": []
549369
}
550370
],
551371
"metadata": {
@@ -564,7 +384,7 @@
564384
"name": "python",
565385
"nbconvert_exporter": "python",
566386
"pygments_lexer": "ipython3",
567-
"version": "3.10.9"
387+
"version": "3.11.3"
568388
}
569389
},
570390
"nbformat": 4,

0 commit comments

Comments
 (0)