-
Notifications
You must be signed in to change notification settings - Fork 16.2k
/
Copy pathhuggingface_endpoint.py
156 lines (127 loc) Β· 5.18 KB
/
huggingface_endpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
import os
from typing import Any, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.utils import from_env
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Self
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
"""HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_huggingface import HuggingFaceEndpointEmbeddings
model = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceEndpointEmbeddings(
model=model,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: Optional[str] = None
"""Model name to use."""
repo_id: Optional[str] = None
"""Huggingfacehub repository id, for backward compatibility."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = Field(
default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None)
)
model_config = ConfigDict(
extra="forbid",
protected_namespaces=(),
)
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv(
"HF_TOKEN"
)
try:
from huggingface_hub import ( # type: ignore[import]
AsyncInferenceClient,
InferenceClient,
)
if self.model:
self.repo_id = self.model
elif self.repo_id:
self.model = self.repo_id
else:
self.model = DEFAULT_MODEL
self.repo_id = DEFAULT_MODEL
client = InferenceClient(
model=self.model,
token=huggingfacehub_api_token,
)
async_client = AsyncInferenceClient(
model=self.model,
token=huggingfacehub_api_token,
)
if self.task not in VALID_TASKS:
raise ValueError(
f"Got invalid task {self.task}, "
f"currently only {VALID_TASKS} are supported"
)
self.client = client
self.async_client = async_client
except ImportError:
raise ImportError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return self
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
# api doc: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed
responses = self.client.post(
json={"inputs": texts, **_model_kwargs}, task=self.task
)
return json.loads(responses.decode())
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = await self.async_client.post(
json={"inputs": texts, **_model_kwargs}, task=self.task
)
return json.loads(responses.decode())
def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
async def aembed_query(self, text: str) -> List[float]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = (await self.aembed_documents([text]))[0]
return response